• Title/Summary/Keyword: 동적증가계수

Search Result 211, Processing Time 0.024 seconds

The Effects of the workforce Age Structure on Productivity or Labor Costs (사업체 근로자의 연령구성이 생산성과 인건비에 미치는 영향)

  • Kim, Ki-Min
    • Management & Information Systems Review
    • /
    • v.37 no.1
    • /
    • pp.123-138
    • /
    • 2018
  • In this paper, we use panel dataset from Korean linked worker-firm to analyse the effects of the workforce age structure on the productivity or labor costs. We measure 'labor productivity' as added value per capita, 'cost of labor' as labor cost per capita and estimate a dynamic panel model to study the effects of the workforce age structure on the productivity or labor costs. Empirical analysis results show that the workforce age structure is positively related to productivity and labor costs, but only up to the aged of 35-39. That is, we find that an increase in the proportion of younger workers or elder workers rather than the aged 35-39 has a negative effect on productivity and labor cost. In particular, the difference between the estimation coefficient of productivity and labor cost when the share of workers aged 50 or older is increased instead of the aged 35-39 is higher than the difference between the estimation coefficient of productivity and labor cost when the share of workers aged 30 or younger is increased instead of the aged 35-39. Our results exhibit that it is reasonable for firms to worry about declining productivity of elderly workers, whereas firms already used older workers efficiently, such as by adjusting their labor costs.

Dynamic Characteristics of Thick Rotating Composite Disks (두꺼운 복합재료 회전원판의 동적 특성)

  • Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.649-656
    • /
    • 2016
  • Thick composite disks are utilized in the fast-rotating machines such as turbine disks, flywheels, and so on. The effects of rotating speed on the dynamic characteristics of thick composite disks are deeply studied in this paper. The dynamic governing equations of a rotating composite disk including transverse shear and rotary inertia are derived and then formulated into the finite element equation. Isotropic, circumferentially reinforced disk, and radially reinforced disk are selected for the numerical analysis. The inclusion of the transverse shear and rotary inertia into the governing equation of the rotating disks makes the natural frequency reduced as well as the critical speed. The present results show that the rotation of a thick disk may not reduce the effect of transverse shear and rotary inertia depending on anisotropy, thickness ratio and mode, unlike the results reported in other studies.

Reinforced Performance Evaluation of RC Slab Bridge Using Conclinic Advanced FiberWrep (유리섬유 복합재를 이용한 RC슬래브 교량의 보강성능평가)

  • Park, Soon-Eung;Park, Moon-Ho;Lee, Tack-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.35-40
    • /
    • 2010
  • The present study proposes the strengthening method to use Conclinic Advanced FiberWrep(CAF) so as to improve Load Carrying Capacity of the RC slab bridge. In order to evaluate the strengthening performance, we strengthen 50cm per unit-width of CAF to the slab's bottom of the test bridge that designed with DB 18, then perform Static and Dynamic Field Load Test. As a result of this, 14.7% of the maximum displacement, 5.0% of the strain and 33.7% of the impact factor are reduced after strengthening. At the middle of the test spans, nominal resisting ratio is increased by 27% and Service Load Carrying Capacity is increased by 44.6%, 48.9% of each span 1 and 2. In conclusion, this study indicates that the strengthening method using CAF is very effective to improve the deteriorated RC slab bridge designed with DB 18, to the DB 24 of the first class bridge design load.

Seismic Performance Evaluation of Staggered Wall Structures Using FEMA P695 (FEMA P695를 이용한 격간벽 구조의 내진성능평가)

  • Lee, Joon-Ho;Kang, Hyun-Goo;Lee, Min-Hee;Kim, Jin-Koo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.43-50
    • /
    • 2012
  • The FEMA P695 document proposed a methodology to evaluate the collapse safety of a structure and the validity of the seismic design coefficients. In this study, the seismic performance of six- and twelve-story staggered wall structures with a middle corridor was evaluated based on the FEMA P695 procedure. The analysis results of the prototype structures were compared with those of the structures with an increased coupling beam depth or an increased re-bar ratio of the coupling beams in order to investigate the effect of retrofit. The adjusted collapse margin ratios (ACMR) of the model structures obtained from incremental dynamic analyses turned out to be larger than the specified limit states of an ACMR of 20%, which implies that the analysis model structures have enough strength against design level earthquakes. It was also observed that the increase in the re-bar ratio of the coupling beams between the staggered walls was more effective in increasing the ACMR than an increase in the depth of the coupling beams.

Dynamic Calibration Coefficients Estimation with Linear Interpolation for Uncooled TEC-less IRFPA (비냉각형 TEC-less 열상 시스템에 적합한 선형보간 기반 동적 보정 계수 추정 기법)

  • Han, Sang-Hyuck;Kwak, Dong-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.98-102
    • /
    • 2012
  • These days, Uncooled IR Systems are more popular in the area of defense and aerospace than before. Uncooled IR Systems are widely used as core technology for making unmanned systems and detecting enemy objects during the day and night in the distance. Recently, researches on TEC-less IRFPA have been increased to minimize the power consumption and to make a smaller system than before. For this, it needs to find adequate NUC(Non-Uniformity Correction) coefficients as FPA(Focal Plane Array) temperature changes. In this paper, we propose a new NUC coefficient estimating technique, DCCE-LI(Dynamic Calibration Coefficients Estimation with Linear Interpolation), for TEC-less IRFPA. It is based on a linear interpolation method and it can estimate NUC coefficients in real-time. So, by testing and evaluating it with some IR images, we conclude that the quality of IR images using proposed method is better than applying static coefficients.

The Evaluation for Running Safety of Incheon International Airport Railway EMU (인천국제공항철도 전동차의 주행안전성 평가)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.619-625
    • /
    • 2007
  • The dynamic characteristic test result of electric rail car which is operated in Incheon International Airport Railroad is described in this paper. Express train in Incheon International Airport Railroad drives at 120km/h first in the country and derailment coefficient was measured for empty car and full-loaded car respectively. The measurement result of derailment coefficient, a key safety indicator about derailment, of empty car was higher than full-loaded car and both were lower than 0.8. The railway state wasn't good in operated section where is serviced about 80eh and derailment coefficient also increased. Horizontal pressure was below 2.1 ton at empty car and below 2.4 ton at full-loaded car. The electric rail car in Incheon International Airport Railroad has been confirmed it's running safety at 120km/h by the measurement of derailment coefficient. But the way of assessing applied in this paper has demerits such as complication of test method, difficulty for measurement device installation and high cost. Therefore the method which is simple to measure and can certify vehicle's safety even when service driving has to be researched.

A Possible Test Method Proposed for Resilient Modulus (MR) and Analysis of Correlation between Resilient Modulus and Shear Modulus of Track Subgrade Soil (흙노반재료의 회복탄성계수(MR) 결정을 위한 반복삼축압축시험법 제시 및 변형계수 상관성 분석)

  • Park, Jae Beom;Choi, Chan Yong;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.85-98
    • /
    • 2017
  • In general, under the repetitive dynamic load generated by rail cars running on the track, subgrade soil experiences changes of stress conditions such as deviatoric stress (${\sigma}_d$) and bulk stress (${\theta}$). Due to the repetitive change of deviatoric stress (${\sigma}_d$) with number of loadings, the resilient modulus ($M_R$) can be obtained by using the measured resilient strain (${\varepsilon}_r$) after a sufficient number of loadings. At present, no plausible and unified test method has been proposed to obtain the resilient modulus of railway track subgrade soil. In this study, a possible test method for obtaining the resilient modulus ($M_R$) of railway track subgrade soil is proposed; this test, by utilizing repetitive triaxial compression testing, can consider all the important parameters, such as the confining stress, deviatoric stress, and number of loadings. By adapting and using the proposed test method to obtain $M_R$, $M_R$ values for compacted track subgrade soil can be successfully determined using soil obtained in three field sites of railway track construction with changing water content range from OMC. In addition, shear modulus (G) ~ shear strain (${\gamma}$) relation data were also obtained using a mid-size RC test. A correlation analysis was performed using the obtained G and $M_R$ values while considering the strain levels and modes of strain direction.

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Numerical Analysis for Dynamic Characteristics of Next-Generation High-Speed Railway Bridge (차세대 고속철 통과 교량의 동적특성에 대한 수치해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Yi, Seong-Tae;Jeong, Byeong-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • To take into account of the increasing speed of next generation high-speed trains, a new design code for the traffic safety of railway bridges is required. To solve dynamic responses of the bridge, this research offers a numerical analyses of PSC (Pre-stressed Concrete) box girder bridge, which is most representative of all the bridges on Gyungbu high-speed train line. This model takes into account of the inertial mass forces by the 38-degree-of-freedom and interaction forces as well as track irregularities. Our numerical analyses analyze the maximum vertical deflection and DAF (Dynamic Amplification Factor) between simple span and two-span continuous bridges to show the dynamic stability of the bridge. The third-order polynomial regression equations we use predict the maximum vertical deflections depending on varying running speeds of the train. We also compare the vertical deflections at several cross-sectional positions to check the influence of running speeds and the maximum irregularity at a longitudinal level. Moreover, our model analyzes the influence lines of vertical deflection accelerations of the bridge to evaluate traffic safety.