DOI QR코드

DOI QR Code

Dynamic Characteristics of Thick Rotating Composite Disks

두꺼운 복합재료 회전원판의 동적 특성

  • Koo, Kyo-Nam (Department of Aerospace Engineering, University of Ulsan)
  • Received : 2016.01.21
  • Accepted : 2016.07.04
  • Published : 2016.08.01

Abstract

Thick composite disks are utilized in the fast-rotating machines such as turbine disks, flywheels, and so on. The effects of rotating speed on the dynamic characteristics of thick composite disks are deeply studied in this paper. The dynamic governing equations of a rotating composite disk including transverse shear and rotary inertia are derived and then formulated into the finite element equation. Isotropic, circumferentially reinforced disk, and radially reinforced disk are selected for the numerical analysis. The inclusion of the transverse shear and rotary inertia into the governing equation of the rotating disks makes the natural frequency reduced as well as the critical speed. The present results show that the rotation of a thick disk may not reduce the effect of transverse shear and rotary inertia depending on anisotropy, thickness ratio and mode, unlike the results reported in other studies.

두꺼운 복합재료 회전원판은 경량화와 고속화가 요구되는 터빈 디스크, 플라이휠 등에 다양한 기계요소도 활용되고 있다. 본 연구에서는 회전속도가 두꺼운 복합재료 원판의 동적특성에 미치는 영향을 살펴보았다. 이를 위해 두꺼운 복합재료 회전원판의 동적 운동방정식을 유도하고 유한요소 정식화를 수행하였다. 등방성 원판, 원주강화 복합재료 원판, 그리고 반경강화 복합재료 원판에 대한 수치해석을 수행하였다. 횡전단변형과 회전관성의 고려는 원판이 회전할 때에도 고유진동수를 감소시킬 뿐만 아니라 임계속도를 낮추는 역할을 한다. 원판의 회전속도가 증가함에 따라 횡전단변형과 회전관성 효과가 감소한다는 이전의 연구결과와는 달리 탄성계수의 이방성, 두께비, 모우드에 따라 그 효과가 감소 또는 증가할 수 있는 것으로 나타났다.

Keywords

References

  1. Bolund, B., Bernhoff, H., and Leijon, M., "Flywheel Energy and Power Storage Systems," Renewable and Sustainable Energy Reviews, Vol. 11, 2007, pp 235-58. https://doi.org/10.1016/j.rser.2005.01.004
  2. Kaftanoglu, B., Soylr, R., and Oral, S. "Mechanical Energy Storage Using Flywheels and Design Optimization," Energy Storage Systems, Kluwer AP, Dordrecht, 1989.
  3. Roes, J. B., "An Electro-Mechanical Energy Storage System for Space Application," Energy Conversion for Space Power, Vol. 3, Progress in Astronautics and Rocketry, Academic Press, New York, 1961.
  4. Lappas, V., Richie, D., Hall, C., Fausz, J., and Wilson, B., "Survey of Technology Developments in Flywheel Attitude Control and Energy Storage Systems," Journal of Guidance, Control, And Dynamics, Vol. 32, No. 2, 2009.
  5. Notti, J. E., Cormack, A., and Schmill, W. C., "Integrated Power/Attitude Control System (IPACS) Study, Vols. 1 & 2," Rockwell International Space Division NASA-CR-2383, Downey CA, 1974.
  6. Yokohama, T., "Free Vibration Characteristics of Rotating Timoshenko Beams," Int. J. Mech. Sci., Vol. 30, No. 10, 1988, pp. 743-755. https://doi.org/10.1016/0020-7403(88)90039-2
  7. Banerjee, J. R., "Dynamic Stiffness Formulation and Free Vibration Analysis of Centrifugally Stiffened Timoshenko Beams," Journal of Sound and Vibration, Vol. 247, No. 1, 2001, pp. 97-115. https://doi.org/10.1006/jsvi.2001.3716
  8. Kaya, M. O., "Free Vibration Analysis of a Rotating Timoshenko Beam by Differential Transform Method," Aircraft Engineering and Aerospace Technology: An International Journal, Vol. 78, No. 3, 2006, pp. 194-203. https://doi.org/10.1108/17488840610663657
  9. Sinha, S. K., "Determination of Natural Frequencies of a Thick Spinning Annular Disk Using a Numerical Rayleigh-Ritz's Trial Function," Journal of the Acoustical Society of America, Vol. 81, No. 2, 1987, pp. 357-369. https://doi.org/10.1121/1.394901
  10. Cote, A., Atalla, N., and Nicolas, J., "Effects of Shear Deformation and Rotary Inertia on the Free Vibration of a Rotating Annular Plate," Journal of Vibration and Acoustics, Vol. 119, 1997, pp. 641-643. https://doi.org/10.1115/1.2889775
  11. Kim, D. H. and Koo, K. N., "Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks," Journal of the Korean Society for Composite Materials, Vol. 20, No. 3, 2007, pp. 43-49.
  12. Koo, K. N., "Effects of Shear Deformation and Rotary Inertia on the Natural Frequencies of Axially Loaded Beams," Journal of Mechanical Science and Technology, Vol. 28, No. 3, 2014, pp. 849-857. https://doi.org/10.1007/s12206-013-1113-8
  13. Koo, K. N. and Lesieutre, G. A., "Vibration and Critical Speeds of Composite-ring Disks for Data Storage," Journal of Sound and Vibration, Vol. 329, No. 7, 2010, pp. 833-847. https://doi.org/10.1016/j.jsv.2009.09.040