• Title/Summary/Keyword: 동작벡터

Search Result 262, Processing Time 0.027 seconds

LOS/LOC Scan Test Techniques for Detection of Delay Faults (지연고장 검출을 위한 LOS/LOC 스캔 테스트 기술)

  • Hur, Yongmin;Choe, Youngcheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • The New efficient Mux-based scan latch cell design and scan test of LOS/LOC modes are proposed for detection of delay faults in digital logic circuits. The proposed scan cell design can support LOS(Launch-off-Shift) and LOC(Launch-off-Capture) tests with high fault coverage and low scan power and it can alleviate the problem of the slow selector enable signal and hold signal by supporting the logic capable of switching at the operational clock speeds. Also, it efficiently controls the power dissipation of the scan cell design during scan testing. Functional operation and timing simulation waveform for proposed scan hold cell design shows improvement in at-speed test timing in both test modes.

A New Low Power Scan BIST Architecture Based on Scan Input Transformation Scheme (스캔입력 변형기법을 통한 새로운 저전력 스캔 BIST 구조)

  • Son, Hyeon-Uk;Kim, You-Bean;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.43-48
    • /
    • 2008
  • Power consumption during test can be much higher than that during normal operation since test vectors are determined independently. In order to reduce the power consumption during test process, a new BIST(Built-In Self Test) architecture is proposed. In the proposed architecture, test vectors generated by an LFSR(Linear Feedback Shift Resister) are transformed into the new patterns with low transitions using Bit Generator and Bit Dropper. Experiments performed on ISCAS'89 benchmark circuits show that transition reduction during scan testing can be achieved by 62% without loss of fault coverage. Therefore the new architecture is a viable solution for reducing both peak and average power consumption.

A Design of Low-power/Small-area Arithmetic Units for Mobile 3D Graphic Accelerator (휴대형 3D 그래픽 가속기를 위한 저전력/저면적 산술 연산기 회로 설계)

  • Kim Chay-Hyeun;Shin Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.857-864
    • /
    • 2006
  • This paper describes a design of low-power/small-area arithmetic circuits which are vector processing unit powering nit, divider unit and square-root unit for mobile 3D graphic accelerator. To achieve area-efficient and low-power implementation that is an essential consideration for mobile environment, the fixed-point f[mat of 16.16 is adopted instead of conventional floating-point format. The vector processing unit is designed using redundant binary(RB) arithmetic. As a result, it can operate 30% faster and obtained gate count reduction of 10%, compared to the conventional methods which consist of four multipliers and three adders. The powering nit, divider unit and square-root nit are based on logarithm number system. The binary-to-logarithm converter is designed using combinational logic based on six-region approximation method. So, the powering mit, divider unit and square-root unit reduce gate count when compared with lookup table implementation.

Motor Imagery EEG Classification Method using EMD and FFT (EMD와 FFT를 이용한 동작 상상 EEG 분류 기법)

  • Lee, David;Lee, Hee-Jae;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1050-1057
    • /
    • 2014
  • Electroencephalogram (EEG)-based brain-computer interfaces (BCI) can be used for a number of purposes in a variety of industries, such as to replace body parts like hands and feet or to improve user convenience. In this paper, we propose a method to decompose and extract motor imagery EEG signal using Empirical Mode Decomposition (EMD) and Fast Fourier Transforms (FFT). The EEG signal classification consists of the following three steps. First, during signal decomposition, the EMD is used to generate Intrinsic Mode Functions (IMFs) from the EEG signal. Then during feature extraction, the power spectral density (PSD) is used to identify the frequency band of the IMFs generated. The FFT is used to extract the features for motor imagery from an IMF that includes mu rhythm. Finally, during classification, the Support Vector Machine (SVM) is used to classify the features of the motor imagery EEG signal. 10-fold cross-validation was then used to estimate the generalization capability of the given classifier., and the results show that the proposed method has an accuracy of 84.50% which is higher than that of other methods.

Implementation of Physical Activity Energy Expenditure Prediction Algorithm using Accelerometer at Waist and Wrist (허리와 손목의 가속도 센서를 이용한 신체활동 에너지 소비량 예측 알고리즘 구현)

  • Kim, D.Y.;Jung, Y.S.;Jeon, S.H.;Kang, SY.;Bae, Y.H.;Kim, N.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Estimating algorithm of physical activity energy expenditure was implemented by using a tri-axial accelerometer motion detector of the SVM(Signal Vector Magnitude) of 3-axis(x, y, z). A total of 33 participants(15 males and 18 females) that performed walking and running on treadmill at 2 ~ 11 km/h speeds(each stage increase 1km/h). Algorithm for energy expenditure of physical activities were implemented with $VO_2$ consumption and SVM correlation between the data. Algorithm consists of three kinds and hip, wrist, waist and hip can be used to apply.

  • PDF

A Study on Direction Finding Technique for Array with Faulty Elements (결함소자를 갖는 어레이를 위한 방향 탐지 기법에 관한 연구)

  • Kim, Ki-Man;Youn, Dae-Hee;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.71-75
    • /
    • 1997
  • In this paper, some problems that occur from faulty elements in a direction finding system composed of the linear array are studied and the method which improves the performance is proposed. The fault element means the sensor that has no output or highly reduced gain than other normal sensors. In the case of the presence of faulty elements, the performance of the conventional the spatial spectrum subject to a constraint. The corrected spatial spectrum is obtained by this vector. The computer simulations have been performed to study the performance of the proposed method. We have compared the proposed method with the subaperture processing method of one of the previous works.

  • PDF

Design on Fult Diagnosis System based on Dynamic Fuzzy Model (동적포지모델기반 고장진단 시스템의 설계)

  • 배상욱
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.94-102
    • /
    • 2000
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the unknown nonlinear system, which can detect and isolate process faults continuously over all ranges of operating condition. The dynamic behavior of a nonlinear process is represented by a set of local linear models. The parameters of the DFM are identified by an on-line methods. The residual vector of the FDI system is consisted of the parameter deviations from nominal model and the set of grade of membership values indicating the operating condition of the nonlinear process. The detection and isolation of faults are performed via a neural network classifier that are learned the relationship between the residual vector and fault type. We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features (시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식)

  • Hwang, Seung-Jun;Ahn, Gwang-Pyo;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The task of 3D gesture recognition for controlling equipments is highly challenging due to the propagation of 3D smart TV recently. In this paper, the AdaBoost algorithm is applied to 3D gesture recognition by using Kinect sensor. By tracking time interval trajectory of hand, wrist and arm by Kinect, AdaBoost algorithm is used to train and classify 3D gesture. Experimental results demonstrate that the proposed method can successfully extract trained gestures from continuous hand, wrist and arm motion in real time.

A Study on an Image Classifier using Multi-Neural Networks (다중 신경망을 이용한 영상 분류기에 관한 연구)

  • Park, Soo-Bong;Park, Jong-An
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.13-21
    • /
    • 1995
  • In this paper, we improve an image classifier algorithm based on neural network learning. It consists of two steps. The first is input pattern generation and the second, the global neural network implementation using an improved back-propagation algorithm. The feature vector for pattern recognition consists of the codebook data obtained from self-organization feature map learning. It decreases the input neuron number as well as the computational cost. The global neural network algorithm which is used in classifier inserts a control part and an address memory part to the back-propagation algorithm to control weights and unit-offsets. The simulation results show that it does not fall into the local minima and can implement easily the large-scale neural network. And it decreases largely the learning time.

  • PDF

Structure and Performance Analysis of a New Long Code MMSE Detectors in a W-CDMA Communication System (W-CDMA 통신 시스템에서 새로운 롱 코드 MMSE 검파기 구성 및 성능 분석)

  • Kang, Myoung-Ku
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • This study proposed the composition of a new long-code MMSE detector using the pilot channel that demonstrated the most excellent performance under Rayleigh fading in the previous studies. It analyzed and explained how to maintain the stability of the weight vector(introduction to the course of radio waves) in the receiver. In the operation of the receiver system to remove radio interference, the signal vector distortion received in the channel where fading was present achieved good results by compensating for signal errors. When there was distortion, the response characteristics of the received signals were superior to the common matching filter according to the computer simulation. The long-code MMSE receiver proposed in the study was able to prolong the cycle by $16{\times}T_b$ in the fading environment to fulfill the satisfaction.