• Title/Summary/Keyword: 동역학 식

Search Result 183, Processing Time 0.028 seconds

Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling (Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링)

  • Lee, Chang-Han;Ahn, Kab-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1238-1243
    • /
    • 2005
  • The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Kinetics of Lipase Reactions in Two Phase System (이상계내에서 리파제의 반응동력학)

  • Kwon, Dae Y.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.98-103
    • /
    • 1987
  • Two phase reaction system was used to hydrolyze the olive oil for fat splitting. Kinetics of lipases in two phase system were investigated by determining the hydrolysis rate of triglycerides at various olive oil concentrations in isooctane using the microbial lipases from Candida rugosa and Rhizopus arrhizus. The rate equation in lipid hydrolysis for various olive oil concentrations in two phase system was deviated from the Michaelis-Menten kinetics. The results suggested that the olive oil concentration in isooctane affects the interfacial area. The dependency of the interfacial area on olive oil concentration is greater at the lower olive oil concentration than at the higher substrate concentration. We modified the rate equation by considering the interfacial area between two phases depending on the olive oil concentration in solvent phase.

  • PDF

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves (불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석)

  • Kim, Seungjun;Won, Deok Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • As well as the strength check, fatigue life check is also mainly required for designing mooring lines of the floating structures. In general, forces which induce dynamic structural response significantly affect to fatigue design of the mooring lines. So, waves are mainly considered as the governing loading for fatigue design of the mooring lines. In this study, characteristics of the fatigue damage of the mooring lines for submerged floating tunnels (SFT) under irregular waves are investigated. For this study time domain hydrodynamic analysis is used to obtain motion of the tunnel and tension and stresses of the mooring lines under the specific environmental conditions. Also, the Rainflow-counting method, the Palmgren-Miner's rule, and S-N curves for floating offshore structures presented by DNV recommendation is applied to calculate the fatigue damage due to the fluctuating stresses. Referring to the design plactice of the tendon pipes for TLP (tension-leg platform), which is very similar structural system to SFT, it is assumed that a 100 year return period wave attacks the SFT systems during 48 hours and the fatigue damages due to the environmental loading are calculated. Following the analysis sequence, the effects of the tunnel draft, spacing and initial inclination angle of the mooring lines on the fatigue damage under the specific environmental loadings are investigated.

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior (마이크로와 나노 철을 이용한 고성능 화약물질(HMX, RDX 및 TNT)의 환원처리: 중간산물의 거동과 도역학 상수의 비교)

  • Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • Reduction kinetics and the behaviour of intermediate of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using nano- or micro- size zero valent iron(nZVI or mZVI) as reducing agent. The kinetic constants normalized by the mass of iron ($k_M$) or by the surface area ($k_{SA}$) were measured and compared along with the changes in the concentrations of intermediates. Results showed that $k_M$ and $k_{SA}$ values were not suitable to fully explain the behaviour of mother compounds and reduced intermediates in the batch reactor. The concentrations of initial explosives degradation products, such as nitroso-RDXs, nitroso-HMXs, and hydroxylamino-TNTs, were higher in mZVI treated reactor than in nZVI treated reactor, whereas more reduced polar intermediates such as TAT were accumulated in the nZVI reactor. Therefore, a new parameter, which accounted for the intermediates reduction, needs to be developed.

Characteristic Analysis of Reduced Motion due to the Shape of Floating Structure (부유구조체 형상에 따른 동요감소 특성분석)

  • Lee, Du Ho;Jeong, Youn Ju;You, Young Jun;Park, Min Su
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.357-364
    • /
    • 2013
  • In previous study, the hybrid floating structure composed of a pontoon and a semi-submersible was suggested to reduce the motions of floating structure. It was reported that the suggested hybrid floating structure could reduce the motions. However, the hybrid floating structure could not support enough buoyancy. In this study, the combination floating structure is newly suggested to resolve the problem. In order to adopt the shape of floating structures reducing the motions, the hydrodynamic analysis of various floating structures such as the pontoon, the hybrid and the combination of floating structure is carried out through hydrodynamic analysis program ANSYS AQWA. It is found that the combination floating structure is remarkably effective to reduce the motions compared to the other cases. Thus, the suggested combination floating structure may be a useful offshore structure for constructing a very large floating structure.

Papers : Implicit Formulation of Rotor Aeromechanic Equations for Helicopter Flight Simulation (논문 : 헬리콥터 비행 시뮬레이션을 위한 로터운동방정식 유도)

  • Kim, Chang-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.8-16
    • /
    • 2002
  • The implicit formulation of rotor dynamics for helicopter flight simulation has been derived and and presented. The generalized vector kinematics regarding the relative motion between coordinates were expressed as a unified matrix operation and applied to get the inertial velocities and accelerations at arbitaty rotor blade span position. Based on these results the rotor aeromechanic equations for flapping dynamics, lead-lag dynamics and torque dynamics were formulated as an implicit form. Spatial integration methods of rotor dynamic equations along blade span and the expanded applicability of the present implicit formulations for arbitrary hings geometry and hinge sequences have been investigated. Time integration methods for present DAE(Differential Algebraic Equation) to calculate dynamic response calculation are recommenaded as future works.

Phase Equilibria of Hydrates in Porous Media: Effect of Pore size and Salinity (다공성 매질에서의 하이드레이트 상평형 측정: 기공크기 및 염의 영향)

  • Lee, Seung-Min;Cha, In-Uk;Lee, Ju-Dong;Seo, Yong-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.545-548
    • /
    • 2009
  • 최근 천연가스 개발의 중요성이 대두되면서 심해저 퇴적층에 존재하고 있는 천연가스 하이드레이트 개발에 많은 연구가 진행되고 있다. 본 연구에서는 심해저 퇴적층에 부존하는 가스 하이드레이트 조건과 유사하게 하기위해 3 wt% 농도의 염수를 다공성 실리카 젤 기공에 넣어 사용하였다. 기공의 직경에 따른 영향을 알아보기 위해 기공 직경이 각각 6.0, 15.0, 30.0 nm인 실리카 젤을 사용하여, 천연가스 주성분인 에탄, 프로판, 메탄+프로판 하이드레이트의 3상 (H-Lw-V) 평형을 측정하였다. 그 결과 기공의 크기가 작아질수록 각각의 벌크 상태의 에탄, 프로판, 메탄+프로판 하이드레이트에 비해 하이드레이트의 평형조건이 온도는 낮아지고 압력이 높아지는 저해효과가 커짐을 알 수 있었다. 실험값으로 부터 기공 내의 물과 하이드레이트상 사이의 계면장력 값을 Gibbs-Thomson식에 의해 구할 수 있으며, 열역학 계산을 통하여 실험값과 비교하였다. 본 연구에서 얻어진 결과는 심해저 천연가스 개발, 이산화탄소 심해저장 등의 가스 하이드레이트 응용 연구에 유용한 기초 자료가 될 것이다.

  • PDF