Biosorption of Lead ions onto Laminaria japonica and Kjellmaniella crassifolia : Equilibrium and Kinetic Modelling

Laminaria japonica와 Kjellmaniella crassifolia를 이용한 Pb의 생체흡착 : 흡착속도 및 흡착평형 모델링

  • 이창한 (삼영이엔테크(주)) ;
  • 안갑환 (부산가톨릭대학교 환경과학부)
  • Published : 2005.11.30

Abstract

The batch experiments of biosorption were carried out for the removal of lead ion from metal solution using Laminaria japonica and Kjellmaniella crassifolia, two species of marine algaes as biosorbent. We have investigated biosorption kinetics and equilibrium of lead by using marine algaes. We observed that biosorption of lead occurred very rapidly by marine algaes ; the biosorption reached equilibrium less than 2 hr. These experimental data could be accurately described by a pseudo-second-order rate equation, obtaining values between $0.883{\times}10^{-3}$ and $0.628{\times}10^{-3}\;g/mg/min$ for the biosorption rate constant $k_{2,ad}$. It could be described with Langmuir, Redlich-Peterson, and Koble-Corrigan(Langmuir-Freundlich) equation. The biosorption capacity by L. japonica and K. crassifolia were in the sequence of Pb>Cd>Cr>Cu and Pb>Cu>Cd>Cr, respectively. The biosorption capacity of L. japonica were increased with pH increasing.

본 연구에서는 해안가에서 자생하는 두 종의 해조류(Laminaria japonica와 Kjellmaniella crassifolia)를 생체흡착제로 사용하여 용액중의 중금속(납) 제거 실험을 통해 생체흡착제의 납의 흡착속도와 흡착평형 특성을 연구하였다. 두 종의 해조류을 사용한 납의 생체흡착은 흡착초기 2시간 이내에 평형에 도달하였다. 흡착속도는 유사 2차 흡착속도식에 의해 거의 정확한 모사가 가능하였으며, 여기에서 산출된 속도상수, $k_{2,ad.}$는 각각 $0.883{\times}10^{-3}$$0.628{\times}10^{-3}\;g/mg/min$이었다. 흡착평형은 Langmuir, Redlich-Peterson 및 Koble-Corrigan (Langmuir-Freundlich) 모델식에 의해 잘 모사되었다. 또한, L. japonica와 K. crassifolia의 4가지 중금속에 대한 선택성은 Pb>Cd>Cr>Cu와 Pb>Cu>Cd>Cr순으로 나타났다. 본 실험에 사용된 L. japonica는 pH의 증가에 따라 납의 흡착량도 증가되었다.

Keywords

References

  1. Biotechnol. Prog. v.11 Biosorption of heavy metals Volesky, B.;Holan, Z.R. https://doi.org/10.1021/bp00033a001
  2. Hydromeallurgy v.44 Removal of metals by biosorption: a review Veglio, F.;Beolchini, F. https://doi.org/10.1016/S0304-386X(96)00059-X
  3. Hydromeallurgy v.60 Biosorption of heavy metals by Sphaerotilus natans : an equilibrium study at different pH and biomass concentrations Esposito, A.;Pagnanelli, F.;Lodi, A.;Solisio, C.; Veglio, F https://doi.org/10.1016/S0304-386X(00)00195-X
  4. Bioresour. Tech. v.96 no.1 Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass Yekta, G.;Sibel, U.;Ulgar, G. https://doi.org/10.1016/j.biortech.2003.04.002
  5. J. of Ferm. & Bioeng. v.81 no.5 Biosorption of copper from aqueous solutions by plant root tissues Chen, J.P.;Chen, W.N.;Hsu, R.C. https://doi.org/10.1016/0922-338X(96)85148-8
  6. Environ. Sci. Technol. v.15 no.10 Nature of bonding between metallic ions and algal cell walls Crist, R.H.;Oberholser, K.;Shank, N.;Nguyen, M. https://doi.org/10.1021/es00092a010
  7. Water Res. v.37 no.18 A review of the biochemistry of heavy metal biosorption by brown algae Davis, T.A.;Volesky, B.;Mucci, A. https://doi.org/10.1016/S0043-1354(03)00293-8
  8. J. Wat. Pollut. Control Fed. v.47 Heavy metal removal by activated sludge Neufield, R.D.;Herman, E.R.
  9. Mine. Eng. v.13 no.10-11 Removal of heavy metals from wastewater effluents by biosorptive flotation Aldrich, C.;Feng, D. https://doi.org/10.1016/S0892-6875(00)00096-0
  10. J. Chem. Tech. v.1 Biosorption of Cadmium by Fucus spiralis Cordero, B.;Lodeiro, P.;Herrero, R.;Sastre, M.E.
  11. Water Res. v.37 no.10 Removal of copper ions from aqueous solution by tree fern Ho, Y.S. https://doi.org/10.1016/S0043-1354(03)00002-2
  12. Process Biochemistry v.40 no.3-4 Biosorption of reactive dyes on the green alga Chlorella vulgaris Aksu, Z.;Tezer, S.
  13. Bioresource Technology v.96 no.16 Biosorption of cadmium by biomass of brown marine macroalgae Lodeiro, P.;Cordero, B.;Barriada, J.L.;Herrero, J.L.;Sastre, M.E. https://doi.org/10.1016/j.biortech.2005.01.002
  14. Water Res. v.36 no.10 Cadmium removal from aqueous solution by chitin: kinetic and equilibrium studies Benguella, B.;Benaissa, H. https://doi.org/10.1016/S0043-1354(01)00459-6
  15. Biores. Tech. v.91 no.3 Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass Cruz, C.C.V.;Costa, A.C.A.;Henriques, C.A.;Luna, A.S. https://doi.org/10.1016/S0960-8524(03)00194-9
  16. Sep. Purif Tech. v.21 no.3 Equilibrium and kinetic modeling of cadmium(lI) biosorption by C. volgaris in a batch system : effect of temperature Aksu, Z. https://doi.org/10.1016/S1383-5866(00)00212-4
  17. Saccharomyces cerevisiae와 Aureobasidium pullulans의 납 흡착 특성 서정호