Browse > Article

Reduction of High Explosives (HMX, RDX, and TNT) Using Micro- and Nano- Size Zero Valent Iron: Comparison of Kinetic Constants and Intermediates Behavior  

Bae, Bum-Han (Department of Civil & Environmental Engineering, Kyungwon University)
Publication Information
Journal of Soil and Groundwater Environment / v.11, no.6, 2006 , pp. 83-91 More about this Journal
Abstract
Reduction kinetics and the behaviour of intermediate of three high explosives (HMX, RDX, and TNT) were studies in batch reactors using nano- or micro- size zero valent iron(nZVI or mZVI) as reducing agent. The kinetic constants normalized by the mass of iron ($k_M$) or by the surface area ($k_{SA}$) were measured and compared along with the changes in the concentrations of intermediates. Results showed that $k_M$ and $k_{SA}$ values were not suitable to fully explain the behaviour of mother compounds and reduced intermediates in the batch reactor. The concentrations of initial explosives degradation products, such as nitroso-RDXs, nitroso-HMXs, and hydroxylamino-TNTs, were higher in mZVI treated reactor than in nZVI treated reactor, whereas more reduced polar intermediates such as TAT were accumulated in the nZVI reactor. Therefore, a new parameter, which accounted for the intermediates reduction, needs to be developed.
Keywords
HMX; RDX; TNT; ZVI; Reduction; Micro vs Nano iron;
Citations & Related Records
연도 인용수 순위
  • Reference
1 한국수자원공사, 군남홍수조절지 건설사업 사격장 피탄지 토양오염 정밀조사 보고서 (2005)
2 Bae, B., Nurmi, J.T., and Tratnyek, P.G., Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)with zero valent iron in the presence of electron transfer mediators, Proceedings of Society of Environmental Toxicology and Chemistry Conference, Portland, (2005)
3 Bandstra, J.Z., Miehr, R., Jonhson, R.L., and Tratnyek, P.G., 2005, Reduction of 2,4,6-trinitrotoluene by iron metal: Kinetic controls on product distribution in batch experiments, Environ. Sci. Technol., 39(1) 230-238   DOI   ScienceOn
4 Borch T. and Gerlach, R., 2004, Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene Metabolites and EPA method 8330 explosives: Influence of temperature and an ionpair reagent, J. Chromatography A, 1022, 83-94   DOI   ScienceOn
5 Dunnivant, F.M., Schwarzenbach, R.P., and Macalady, D.L., 1992, Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter, Environ. Sci. Technol., 26(11), 2133-2141   DOI
6 Nurmi, J.T., Tratnyek, P.J., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L., and Driessen, M.D., 2005, Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39(5), 1221-1230   DOI   ScienceOn
7 Oh, S.-Y., Cha, D.K., Kim, B.J., and P.C. Chiu, 2002, Effect of adsorption to elemental iron on the transformation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine in solution, Environ. Tox. Chem., 21(7) 1384-1389   DOI
8 배범한, 1999, 금속 철을 이용한 TNT 환원시의 동역학 산정, 한국토양학회지, 4, 97-108
9 Klausen J., Trober S.P., Haderlein S.B., and Schwarzenbach, R.P., 1995, Reduction of substituted nitrobenzens by Fe(II) in aqueous mineral suspensions, Environ. Sci. Technol., 29(9), 2396-2404   DOI   ScienceOn
10 McCormick, M.L. and Adriaens, P., 2004, Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles, Environ. Sci. Technol., 38(4), 1045-1053   DOI   ScienceOn
11 U.S. EPA, Health Advisory for Hexahydor-1,3,5-trinitro-1,3,5- triazine (RDX) Criteria and Standard Division, Office of Drinking Water, Washington, DC (1988)
12 Feng, J. and Lim, T.-T., 2005, Pathways and kinetics of carbon tetrachloride an chloroform reductions by nano-scale Fe and Fe/ Ni particles: comparison with commercial micro-scale Fe and Zn, Chemosphere, 59, 1267-1277   DOI   ScienceOn
13 Jenkins, T.F., Pennington, J.C., Ranney, T.A., Berry, T.E., Miyares, P.H., Walsh, M.E., Hewitt, A.D., Perron, N.M., Parker, L.V., Hayes, C.A., and Wahlgren, E.G., Characterization of Explosives Contamination at Military Firing Range, Tech Rep. ERDC TR-01-5, USACE Engineering Research and Development Center, Vicksburg, MS (2001)
14 Schwarzenbach, R.P., Stierli, R., Lanz, K., and Zeyer, J., 1990, Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution, Environ. Sci. Technol., 34(10), 1566-1574
15 한국수자원공사, 다락대 사격장내 토양오염 정밀조사를 통한 한탄강댐 수질예측 및 복원공법 연구 (2002)
16 Lien, H.-L. and Zhang, W.-Z., 2001, Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloids and Surfaces, 191, 97-105   DOI   ScienceOn
17 Oh, B.-T., Just, C.L., and Alvarez, P.J., 2001, Hexahydro-1,3,5-trinitro- 1,3,5-triazine mineralization by zerovalent iron and mixed anaerobic cultures, Environ. Sci. Technol., 35(21), 4341-4346   DOI   ScienceOn
18 U.S. EPA, Health Advisory for 2,4,6-trinitrotoluene (TNT) Criteria and Standard Division, Office of Drinking Water, Washington, DC (1988)
19 Devlin, J.F., Klausen, J., and Schwarzenbach, R.P., 1998, Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments, Environ. Sci. Technol., 32(13), 1941-1947   DOI   ScienceOn
20 Ringelberg, D.B., Reynolds, C.M., Walsh, M.E., and Jenkins, T.F., 2003, RDX loss in a suface soil under saturated and well drained conditions, J. Environ., Qual. 32, 1244-1249   DOI   ScienceOn
21 Wanaratna, P., Christodoulatos, C., and Sidhoum, M., 2006, Kinetics of RDX degradation by zero-valent iron(ZVI), J. Hazard. Mater., 136(1), 68-74   DOI   ScienceOn
22 Wang, C.Y., Zheng, D., and Hughes, J.B., 2000, Stability of hydroxylamino- and amino-intermediates from reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene, Bitechnol. Lett., 22(1), 15-19   DOI   ScienceOn
23 Monteil-Rivera, F., Paquet, L., Halasz, A., Montgomery, M.T., and Hawari, J., 2005, Reduction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by zero valent iron: Product distribution, Environ. Sci. Technol., 39(24), 9725-9731   DOI   ScienceOn
24 Timothy, L.J., Fish, W., Gorby, Y.A., and Tratnyek, P.G., 1998, Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface, J. of Contam. Hydrol., 29, 379-398   DOI   ScienceOn
25 Zhang, B., Kendall, R.J., and Anderson, T.A., 2006, Toxicity of the explosive metabolites hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) to the earthworm Eisenia fetida, Chemosphere, 64, 86-95   DOI   ScienceOn
26 Jeffrey, I.D. and John, P.K., Human Health Risks from TNT, RDX, and HMX in Environmental Media and Consideration of the U.S. Regularoty Environment, Lawrence Livermore National Laboratory, UCRL-JC-119715 (1994)
27 Shermata, T.W., Halasz, A., Paquet, L., Thiboutot, S., Ampleton, G., and Hawari, J., 2001, The fate of cyclic nitramine explosives RDX in nature, Environ. Sci. Technol., 35(6), 1037-1040   DOI   ScienceOn
28 Gregory, K.B., Larese-Casanova, P., Parkin, G.E., and Scherer, M.M., 2004, Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeII bound to magnetite, Environ. Sci. Technol., 38(5), 1408-1414   DOI   ScienceOn
29 Spain, J.C., Hughes, J.B., and Knackmuss, H.-J, Biotransformation of Nitroaromatic Compounds and Explosives, Lewis Publishers (2000)
30 Harderlein, S.B., Weissmahr, K.W., and Schwarzenbach, R. P., 1996, Specific adsorption of nitroaromatic explosives and pesticides to clay minerals, Environ. Sci. Technol., 30(2), 612-622   DOI   ScienceOn
31 Singh, J., Comfort, S.D., and Shea, P.J., 1999, Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH, Environ. Sci. Technol., 33(9), 1488-1494   DOI   ScienceOn