Browse > Article
http://dx.doi.org/10.7734/COSEIK.2012.25.5.455

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine  

Ku, Nam-Kug (서울대학교 조선해양공학과)
Roh, Myung-Il (울산대학교 조선해양공학부)
Lee, Kyu-Yeul (서울대학교 조선해양공학과 및 해양시스템공학연구소)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.25, no.5, 2012 , pp. 455-463 More about this Journal
Abstract
In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.
Keywords
floating wind turbine; mutibody system; recursive formulation; dynamic constrained force;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 구남국, 차주환, 박광필, 조아라, 이규열 (2010) Recursive Formulation을 이용한 부유식 풍력 발전기 동적 거동 해석, 2010년 한국풍력에너지학회 추계학술대회, 27∼29.
2 김경환, 김용환 (2008) Weak-scatterer 가정에 기반한 비선형 선박 운동해석, 2008년 대한조선학회 추계학술대회, pp.635-644.
3 박광필 (2011a) 해상 작업 중인 부유식 풍력 발전기의 유연 다물체계 동역학, 공학박사 학위논문, 서울대학교 조선해양공학과.
4 박종식, 남윤수, 김정기, 최명현 (2009) 공탄성 제어를 위한 MW급 풍력발전기 피로 하중 해석, 한국정밀공학회 춘계학술대회, pp.267-268.
5 임오강, 정기용, 이대연, 최은호, 조진래 (2012) 5MW급 풍력발전기용 기어박스 하우징의 형상 최적설계, 한국전산구조공학회논문집, 25(3), pp.237-244.
6 차주환, 박광필, 구남국, 이규열 (2010) 3D Rankine Panel Method를 이용한 전진속도가 없는 선박의 시간 영역 운동 해석, 서울대학교 선박설계자동화 연구실 내부 연구 보고서.
7 최현철, 김동현, 김동만, 박강균 (2010) 풍하중 효과를 고려한 MW급 풍력발전기 타워의 지진응답 해석, 한국전산구조공학회 논문집, 23(2), pp.209∼216.   과학기술학회마을
8 Featherstone, R. (2008) Rigid Body Dynamics Algorithms, Springer.
9 Jonkman, J.M. (2007) Dynamics Modeling and Load Analysis of an Offshore Floating Wind Turbine, Technical Report, NREL/TP-500-41958.
10 Kring, D.C. (1994) Time Domain Ship Motions by a Three-Dimensional Rankine Panel Method, MIT, Ph.D Thesis.
11 Lee, K.Y., Cha, J.H., Park, K.P. (2010) Dynamic Response of a Floating Crane in Waves by Considering the Nonlinear Effect of Hydrostatic Force, Ship Technology Research, 57(1), pp.62∼71.
12 Moriarty, P.J., Hansen, A.C. (2005) AeroDyn Theory Manual, NREL/TP-500-36881, pp.2∼3.
13 Nielsen, F.G., Hanson, T.D., Skaare, B. (2006) Integrated Dynamic Analysis of Floating Offshore Wind Turbines, Proceedings of 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany.
14 Park, K.P., Cha, J.H., Lee, K.Y. (2011b) Dynamic Factor Analysis for the Heavy Lifting Operation Considering an Elastic Boom Effects, Ocean Engineering, in 3rd review.
15 Faltinsen, O.M. (1990) Sea Loads on Ships and Offshore Structures, University of Cambridge.
16 Shabana, A.A. (2005) Dynamics of Multibody Systems, 3rd edition, Cambridge University Press.