• Title/Summary/Keyword: 동역학 모델링

Search Result 263, Processing Time 0.026 seconds

Examination of Modeling Methods for Tower Crane Transportation using Multibody Dynamics (다물체 동역학을 이용한 타워크레인 운송 모델링 방법 연구)

  • Jo, A-Ra;Park, Kwang-Phil;Lee, Chul-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.330-337
    • /
    • 2015
  • When a tower crane is carried by a transporter in shipyard, the height and length of the tower crane should be adjusted to meet the safety guidelines. Since the guidelines came from the field experience, the safety limitation needs to be analyzed by a computer simulation. In this paper, modeling methods are addressed to implement the appropriate transportation simulation of a tower crane. For the relation between the tower crane and the transporter, normal contact force, friction force, and kinematic constraints are compared. Assignment of relevant linear acceleration and angular velocity is considered for the transporter to start or move on an inclined ground surface. By using the examined modeling methods, the dynamic motion of tower crane transportation is analyzed by a dynamic simulation program, and comparison between the simulation result and analytic solution is made to verify the feasibility of the modeling methods.

Linear Quadratic Controller Design of Insect-Mimicking Flapping Micro Aerial Vehicle (곤충모방 날갯짓 비행체의 LQ 제어기 설계)

  • Kim, Sungkeun;Kim, Inrae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.450-458
    • /
    • 2017
  • This paper presents dynamic modelling and simulation study on attitude/altitude control of an insect-mimicking flapping micro aerial vehicle during hovering. Mathematical modelling consists of three parts: simplified flapping kinematics, flapping-wing aerodynamics, and six degree of freedom dynamics. Attitude stabilization is accomplished through linear quadratic regulator based on the linearized model of the time-varying nonlinear system, and altitude control is designed in the outer loop using PID control. The performance of the proposed controller is verified through numerical simulation where attitude stabilization and altitude control is done for hovering. In addition, it is confirmed that the attitude channel by periodic control is marginally stable against periodic pitching moment caused by flapping.

Seawater Intrusion due to Ground Water Developments in Eastern and Central Cheju Watersheds (중-동 제주 수역의 지하수 개발로 인한 해수침투)

  • 박남식;이용두
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.5-13
    • /
    • 1997
  • The Island of Cheju plans massive ground water development to meet predicted water demand. Effective management of ground water resources requires impact assessment study. Due to the nature of the island, effects of sea water must be considered. In this work, salt water intrusion, due to hypothetical ground water development in Eastern and Central Cheju Watersheds, is predicted using a sharp-interface model. The model considers simultaneously hydrodynamics of both freshwater and saltwater. The hypothetical ground water development was designed such that it follows closely the regional ground water development plan. The numerical model predicted that the saltwater wedge may intude over 1km depending on the location. This observation leaves doubt on impact assement studies based on freshwater-flow only modeling.

  • PDF

DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS (유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.386-394
    • /
    • 1997
  • In this study, a few of the modeling methods for flexible spacecraft were introduced and adopted to the modeling of a 3-axes stabilization satellite. The generated model was put into pre-built rigid body attitude control loop. A Lumped Parameter Model(Global Mode Model: GMM) was recommended for the absence of the Finite Element Method(FEM) model. Finally, GMM was compared with FEM in terms of designing a control filter. A 1st-order filter was designed to meet requirements of the controller since the new flexible model was applied, and that filter was added to motor controller and axis controller. MATLAB/Simulink was used as a tool for design and simulation of the control loop and filter.

  • PDF

Kinetic Analysis of the Probability of Hexagonal Face in Juryeonggu (주령구에서 육각면이 나올 확률에 대한 운동역학적 해석)

  • Yoo, Wan Suk;Lee, Jeong Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1085-1089
    • /
    • 2017
  • Juryeonggu is a cuboctahedral die that was used during the Silla period in ancient Korea. This cuboctahedral die consists of two different penal servitudes of 14 sides; however, its equal probability distribution enables it to be used as a die. In this paper, a precise cuboctahedral die, Juryeonggu, was manufactured, and its probability was measured through experiments. Next, the probability was verified through Multibody-dynamics (MBD) modeling and analysis, and the effect of the coefficient of friction on the probability distribution was studied.

Hydropneumatic Modeling and Dynamic Characteristic Analysis of a Heavy Truck Semi-active Cabin Air Suspension System (대형 트럭 반능동형 캐빈 공기 현가시스템의 유공압 모델링 및 동특성 해석)

  • Lee, Kwang-Heon;Jeong, Heon-Sul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.57-65
    • /
    • 2011
  • In this paper, a hydropneumatic modeling and dynamic analysis of a heavy truck semi-active cabin air suspension system is presented. Semi-active cabin air suspension system improves driver's ride comfort by controlling the damping characteristics in accordance with driving situation. So it can reduce vibration between truck frame and cabin. Semi-active cabin air suspension system is consist of air spring, leveling valve and CDC shock absorber, and full cabin system are mathematically modelled using AMESim software. Simulation results of components and full cabin system are compared with experimental data of components and test results of a cabin using 6 axis simulation table. It is found that the simulation results are in good agreements with test results, and the hydropneumatic model can be used well to predict dynamic characterics of heavy truck semi-active cabin air suspension system.

Theoretical Analysis of Annular Injection Supersonic Ejector with a Simple Funnel Shock Wave Model (깔때기 경사충격파를 고려한 환형 분사 초음속 이젝터 이론해석)

  • Kim Se-Hoon;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • In an annular injection supersonic ejector, the supersonic primary flow is injected along the side wall, therefore a funnel-shaped shock wave is generated by the contraction angle of the mixing chamber. In the present study, we developed a simple funnel shock wave model using 2-D wedge and conical shock wave relations. In result, the secondary flow pressure can be predicted more accurately than using a simple 2-D wedge shock wave model. Through the same analysis, the compression ratio and the adiabatic efficiency according to the entrainment ratio were calculated.

A Study on Dynamic Modeling and Analysis of a Wheelset (휠셋의 동역학 모델링 및 해석에 관한 연구)

  • Kang, Ju-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1851-1855
    • /
    • 2011
  • The accuracy of wheel-rail contact analysis is mainly determined by the methods to find wheel-rail contact points and to calculate contact forces. The 2-dimensional approach which calculates contact points based on the profile curves of the wheel and rail has advantage of reducing calculation time but shortage of approximating the solutions when comparing with 3-dimensional analysis In this analysis, wheelset dynamic behaviors calculated by the approach based on the 2-dimensional wheel-rail curves are compared with those by the 3-dimensional wheel-rail surfaces. Yaw angle and lateral displacement of wheelset center are compared when negotiating a curve.

  • PDF

A Study on the Trip Time Sensitivity of MCCB Mechanism (배선용 차단기(MCCB) 개폐기구부의 트립시간 민감도에 관한 연구)

  • 엄위상;김길수;조현길;박진영
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.83-85
    • /
    • 2000
  • 배선용 차단기의 개폐기구는 수동 조작력을 가동 접촉자에 전달하여 차단, 개폐의 동작을 행하는 것으로 Spring과 Link를 주체로 구성되어 있으며 기구부가 단락 차단 성능의 가장 큰 영향을 미친다. 제품 성능 개선을 위해 기구부를 변경하기 위해서는 많은 시행착오를 거치게 되는데 이 때 소요되는 시간과 비용을 줄이기 위해 동특성 해석이 널리 사용되고 있다. 본 논문에서는 제품의 동적 모델링을 위해 범용 동역학 해석 프로그램인 ADAMS(Automatic Dynamic Analysis of Mechanical System)을 이용하였고 설계 변경시 반복작업으로 인한 실패비용을 최소화하고 링크 지점의 최적값을 구하기 위해 민감도 해석과 최적화 기법을 도입하였다.

Basic Concepts of Bond Graph Modeling Techniques and It's Applications (본드선도 모델링 방법의 기본개념 및 그 적용 예)

  • 김종식;박전수
    • Journal of the KSME
    • /
    • v.33 no.1
    • /
    • pp.22-32
    • /
    • 1993
  • 본드선도는 물리적 등가가 적용되는 모든 상사 시스템을 대단히 조직이며 일관성 있게 모델링할 수있을 뿐만 아니라 시스템의 동적 방정식을 제어동역학 관점에 유리한 상태방정식으로 직접 유도할 수 있다. 또한 본드선도는 모델링 단계에서 무시된 각 요소들의 동적 특성 즉, 기계시스 템에서 회전축의 탄성처짐이나 운동 물체들 사이의 마찰 효과 전기 . 자기시스템에서 자속유출량, 그리고 유체 . 유압시스템에서 밀봉부분의 유량손실이나 압축성 유체 특성 등을 기곤에 구성된 본드선도의 변경 없이 각 특성들이 나타나는 본드상에 적절한 접합요소와 함께 단순히 첨가하여 고려할 수 있기 때문에 모델링 과정을 다시 반복하지 않고도 무시된 동적 특성들이 전체시스템에 미치는 영향을 파악할 수 있다. 특히 본드선도가 에너지 변환 장치나 에너지 유동 메카니즘이 복잡한 다에너지역 시스템 등에 거동이 전체시스템에 미치는 효과를 시각적으로 보다 세밀히 파악할 수 있을 뿐만 아니라 구성된 본드선도에 인과관계를 할당하여 본드선도의 접합요소를 통하여 유도된 최종적인 동적 방정식이 현실적으로 실현 가능한 물리시스템인지 파악할 수 있어 본드선도 모델링 단계에서 시스템을 묘사하는 동적 방정식의 옳고 그름을 평가할 수 있다. 이와 같이 본드선도는 기계, 전기 . 자기, 유체 . 유압, 열 시스템 및 이들이 조합된 복잡한 다에너지역 시스템 등을 효과적으로 모데링할 수 있는 매우 유용한 동적 시스템 모델링 방법이다.

  • PDF