• Title/Summary/Keyword: 도장성능 평가

Search Result 40, Processing Time 0.023 seconds

Development of Fluid Silicic Acid Coating with Paint Materials of the Steel Electric Power Facilities (강재 전력시설물을 위한 액상 규산질 도장제 개발에 대한 연구)

  • Kwon, Seung-Jun;Park, Sang-Sun;Lee, Sang-Min;Lee, Myung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.57-64
    • /
    • 2008
  • Generally, organic paint on steel towers can guarantee durability in normal condition but occasionally shows its deterioration on the power line tower and electric power facilities, exposed to light(ultra violet) or heat. The objective of this study is to develope the inorganic paint material based on fluid silicic acid for steel electric power facilities. For the purpose, optimal mixture proportion is derived through 6 preliminary test and, additionally physical and durability performance test are carried out for selected specimens. The performances of developed organic paint material is similar to those of organic paint material. If resistance to chemical attack is improved, the developed inorganic paint is evaluated to replace the organic paint and obtain wide application.

Examination of Tensile and Adhesion Performance According to Components and Application Environment of Cement-mixed Polymer-based Waterproofing (시멘트 혼입 폴리머계 방수재의 구성요소 및 적용환경에 따른 인장·부착성능 평가)

  • Lee, Jin-Yong;Choi, Jeong-Kyun;Kim, Seong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.41-49
    • /
    • 2021
  • Cement-mixed polymer-based waterproofing materials are generally used in the form of application by mixing in the field, and it is necessary to supplement the construction ability for air bubbles and uneven coating thickness due to irregularities during construction. The final purpose of this study is to improve the waterproofing performance by adding a sheet attaching process to the composite construction rather than the single process of painting and applying the construction method when applying the polymer waterproofing material to the field. In this regard, the applicability was evaluated by examining the material, environment, and manufacturing method.

Development of Deep Learning-Based Damage Detection Prototype for Concrete Bridge Condition Evaluation (콘크리트 교량 상태평가를 위한 딥러닝 기반 손상 탐지 프로토타입 개발)

  • Nam, Woo-Suk;Jung, Hyunjun;Park, Kyung-Han;Kim, Cheol-Min;Kim, Gyu-Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • Recently, research has been actively conducted on the technology of inspection facilities through image-based analysis assessment of human-inaccessible facilities. This research was conducted to study the conditions of deep learning-based imaging data on bridges and to develop an evaluation prototype program for bridges. To develop a deep learning-based bridge damage detection prototype, the Semantic Segmentation model, which enables damage detection and quantification among deep learning models, applied Mask-RCNN and constructed learning data 5,140 (including open-data) and labeling suitable for damage types. As a result of performance modeling verification, precision and reproduction rate analysis of concrete cracks, stripping/slapping, rebar exposure and paint stripping showed that the precision was 95.2 %, and the recall was 93.8 %. A 2nd performance verification was performed on onsite data of crack concrete using damage rate of bridge members.

Formation of Liquid-Silicate Paint and Its Application Possibility (액상 무기계 도료의 제작과 그 적용가능성에 대한 연구)

  • Baek, Sang-Min;Yang, Jeong-Hyeon;Mun, Gyeong-Man;Lee, Myeong-Hun;Park, Sang-Sun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.149-150
    • /
    • 2007
  • 현재 널리 적용되고 있는 유기에폭시 도장의 경우에는 부식환경을 차단하는 등의 일반적인 차원에는 상당히 우수하나, 열이나 빛에 의한 열화 및 부식 문제와 환경오염 등의 문제를 가지고 있다. 이를 해결하기위한 방법으로 순수 무기계의 액상 규산질을 바인더로 사용한 도료의 제작을 시도하였으며, 열화성능평가시험을 통해 그 적용가능성에 대해 검토하였다. 실험결과 환경친화적인 -Si-O-Si- 결합의 1액형 무기 규산질 도료의 제작이 가능하였으며 향후 여러 가지 성능 중 특히 내식성, 내산성 및 광택성 등의 보완연구가 선해오디어야 할 것으로 사료된다.

  • PDF

High Temperature Drying of Pitch Pine Lumber (리기다소나무 고온건조)

  • Yeo, Hwan-Myeong;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.46-51
    • /
    • 2004
  • The objective of this study was to evaluate the applicability of high temperature drying to pitch pine (Pinus rigida) lumber, especially intended for use as lamina of structural glued laminated timber (glulam), to enhance the efficient utilization and provide added-value to that species. The high temperature schedule and drying procedures utilized were shown to be reasonable for drying glulam lamina due to the occurrence of small moisture gradients, minimal residual drying stress, and low warpage. Through preliminary tests, it was confirmed that residual resin at lamina surfaces did not adversely affect the gluing process. However, quantitative analysis of resin is required for developing a method to constrain the occurrence of pitch trouble with respect to decreasing long-term adhesive and finish durability of glulam in use after manufacturing. The final moisture content of high temperature dried lamina was much lower than target moisture content and discoloration was more severe than anticipated. In a further study, it will be necessary to determine the optimal drying conditions, such as temperature, humidity, drying time, and top load restraint level, which could best control discoloration, warpage, and moisture content of the lamina, while minimizing fuel expense.

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process (도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가)

  • Lee, JunHo;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.383-389
    • /
    • 2016
  • In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

Numerical simulation of VOC decomposition in an arc plasma reactor (수치해석 기법을 이용한 아크 플라즈마 반응기의 VOCs 분해성능 평가연구)

  • Park, Mi-jeong;Jo, Young-min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.1-7
    • /
    • 2016
  • A range of techniques have been being developed to remove the volatile organic compounds from paining processes. High temperature decomposition of harmful VOCs using arc plasma has recently been proposed, and this work analyzed the extreme hot process by computer-aided fluid dynamics prior to the reactor design. Numerical simulations utilized the conservation equations of mass and momentum. The simulation showed that the fluid flowed down along the inner surface of the centrifugal reactor by forming intensive spiral trajectories. Although the high temperature gas generated by plasma influences the bottom of the reactor, no heat transfer in radial direction appeared. The decomposition efficiency of a typical VOCs, toluene, was found to be a maximum of 67% across the reactor, which was similar to the value (approximately 70%) for the lab-scale test.

Evaluation of the Properties of Wrapping Material of Steel Pipe for Water Supply (수도용 강관의 도복장 재료특성 평가에 관한 연구)

  • Lee, Hyun-Dong;Lee, Ji-Eun;Kwak, Phill-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.331-338
    • /
    • 2008
  • Coal-tar enamel, blown asphalt and polyethylene have been used as wrapping materials of steel pipe in Korea. Currently, every manufacturer produces wrapped steel pipes with different materials and methods, and little research has been performed to get on wrapping methods and materials. In this research, properties of wrapping material of steel pipe used for water supply have been evaluated. All of the materials tested in this work were found to meet the standard. Among the wrapping materials of steel pipe tested, blown asphalt and coal-tar enamel were reasonable in price, and their mechanical properties were excellent. The quality of the wrapped steel pipes was being melted easily in organic solvent. When coated thick, the load of the steel pipes was higher than necessary. Tensile strength of cathode exfoliation and PE 3-layer wrapping method was excellent. The pulling intensity of T-Die PE 3-layer was stronger than PE fluidized in PE wrapping method. Cathode exfoliation area was smaller than PE fluidized. Mechanical property and thermo-property of T-Die PE 3-layer were excellent and its anti-chemical property was great. Liquid epoxy can change the property of coating materials depending on the hardening condition and resin selection. Polyurethane used in this test showed a less adhesive strength with steel pipes than epoxy. Moisture absorbance rate was higher than Epoxy's, however. To utilize polyurethane as wrapping materials, basic property of the matter should be improved followed by finding the best suited coating condition. The method of PE 3-layer by extrude method appeared to be the best in this study. However, identification of other wrapping materials requires further additional tests.

A Study on the Physical Properties of Silicone Type Marine growth Antifouling Coatings (실리콘계 해양생물 부착 방지 도료의 도막 물성 고찰)

  • Kim, Seong-Kil;Choi, Dae-Won;Han, Won-Heui;Kwon, Hyuk-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.134-135
    • /
    • 2013
  • In this study, the physical properties and antifouling were investigated to make the Marine growth antifouling coatings by blending of synthesized silicone resin and pigment with a low surface tension. To examine the film properties and foul release of the prepared coatings, film specimens were prepared with the prepared coatings and anti corrosion coatings. The test results showed that the silicone type antifouling coatings had very excellent antifouling properties rather than any other coatings because of the coating films had followed the low surface tension and elasticity, and prevention of adhesion for marine growth and mechanical adhesions.

  • PDF

An Experimental Study on the Structural Characteristics of Tension Joints with High-Strength Bolted Split-Tee Connection (고력볼트 스플릿-티 인장접합부의 구조성능에 관한 실험적 연구)

  • Choi, Sung Mo;Lee, Seong Hui;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.737-745
    • /
    • 2004
  • In general, most of the beam-to-column connections for steel structures are regarded as either rigid connections or pin connections. Recently, the concept of a semi-rigid connection was introduced for a correct analysis of steel structures. Several experimental and theoretical researches have been performed regarding the structural behaviors of frames and buildings with semi-rigid connections. The results are not well known, and structural frame/building has not been designed to introduce the concept of semi-rigid connections between a beam and column until this time. To resolve this, this research depends on design specifications prepared by other advanced countries for the design of buildings with semi-rigid connections. Such a specification, however, should incorporate domestic characteristics of steel material properties and load conditions. This paper deals with structural capacities and deformable behaviors for a split-T tensile connection with F10T high-strength bolts to investigate the structural characteristics of semi-rigid frames. The experimental parameters include the thickness of T-flanges, painted or not, preloaded or not, and load pushover pattern. A total of 20 specimens were fabricated and tested with a 300-ton UTM. The structural capacities and behavior for split-T tensile connections were evaluated on each research parameter.