DOI QR코드

DOI QR Code

Development and Performance Evaluation of Hull Blasting Robot for Surface Pre-Preparation for Painting Process

도장전처리 작업을 위한 블라스팅 로봇 시스템 개발 및 성능평가

  • 이준호 ((주)마린스페이스) ;
  • 진태석 (동서대학교 메카트로닉스공학과)
  • Received : 2016.10.06
  • Accepted : 2016.10.19
  • Published : 2016.10.25

Abstract

In this paper, we present the hull blasting machine with vision-based weld bead recognition device for cleaning shipment exterior wall. The purpose of this study is to introduce the mechanism design of the high efficiency hull blasting machine using the vision system to recognize the weld bead. Therefore, we have developed a robot mechanism and drive controller system of the hull blasting robot. And hull blasting characteristics such as the climbing mechanism, vision system, remote controller and CAN have been discussed and compared with the experimental data. The hull blasting robots are able to remove rust or paint at anchor, so the re-docking is unnecessary. Therefore, this can save time and cost of undergoing re-docking process and build more vessels instead. The robot uses sensors to navigate safely around the hull and has a filter system to collect the fouling removed. We have completed a pilot test of the robot and demonstrated the drive control and CAN communication performance.

본 논문은 선박의 외벽 청소를 위하여 영상기반의 용접부 인식기능을 탑재한 선체 블라시팅 로봇을 제시하였다. 본 로봇제작의 목표로서 선체 청소로봇의 설계 및 제작과정과 영상을 이용한 용접 비드 인식에 따른 성능 결과를 제시하였다. 그리고, 로봇제작에 따른 메카니즘과 로봇시스템의 제어기 제작 과정과 수직상승 메카니즘, 영상 시스템, 원격제어 기능을 갖는 선체 청소 특성에 대해서 기술하였다. 이러한 선체 청소로봇은 선박이 정박하는 동안에 청소를 수행하게 되므로 재도킹을 할 필요가 없는 장점이 있다. 따라서, 개발된 청소작업은 시간과 비용을 절감할 수 있고, 선체의 수직벽면의 주행이 가능하므로 부유물질 등을 수집할 수 있는 필러장치를 장착하고 있다. 개발된 로봇시스템의 동작 및 통신 성능테스트 결과를 통하여 성능평가 결과를 제시하였다.

Keywords

References

  1. A. Smith, Marine coating: the coming future, Protective coating Europe, Feb. 1999.
  2. Norm on hull integrity, International Maritime Organisation (IMO), 1999.
  3. K. Autumn, M. Sitti, and Y. Liang, et al, "Evidence for Van der Waals adhesion in gecko setae," Proceedings of the National Academy of Sciences of the USA, vol. 99, no. 19, pp. 12252-12256, Sep. 2002. https://doi.org/10.1073/pnas.192252799
  4. K. Autumn, Y. Liang, and S. T. Hsieh, et al, "Adhesive force of a single gecko foot-hair," Nature, vol. 405, pp. 681-5, June 2000. https://doi.org/10.1038/35015073
  5. B. Chu, K. Jung, C. S. Han, et al, "A survey of climbing robots: Locomotion and adhesion," International Journal of Precision Engineering and Manufacturing, vol. 11, pp. 633-647, 2010. https://doi.org/10.1007/s12541-010-0075-3
  6. F. Rochat, P. Schoeneich, O. Nguyen, M. Francesco, "Tripillar: miniature magnetic climbing robot with plane transition ability," International Conference on Climbing and Walking Robots, CLAWAR, 2009.
  7. Seokong Kang, Jongwhan Choi, Taeseok Jin, "Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking," Korea Institute of Intelligent Systems, vol. 25, no. 5, pp. 444-450, 2015. https://doi.org/10.5391/JKIIS.2015.25.5.444
  8. G. Lee , G. Wu, J. Kim, T. WonSeo, "High-payload climbing and transitioning by compliant locomotion with magnetic adhesion," Robotics and Autonomous Systems, vol. 60, pp.1308-1316 , August 2012. https://doi.org/10.1016/j.robot.2012.06.003
  9. S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, M.R. Cutkosky, "Smooth Vertical Surface Climbing with Directional Adhesion," IEEE Transactions on Robotics, vol. 24, February 2008.
  10. M. Murphy, C. Kute, Y. Menguc, and M. Sitti, "Waalbot II: adhesion recovery and improved performance of a climbing robot using fibrillar adhesives," International Journal of Robotics Research, October 13, 2010.
  11. A. Wayle, "Trends for European shipyards," 30th International conference on automated applications, Yohaio, Japan, Jun 1998.
  12. Jaemyung Ry, Dong Hun Kim, "Study on Wireless Control of a Board Robot Using a IMU sensor," Korea Institute of Intelligent Systems, vol. 24, no. 2, pp. 186-192, 2014. https://doi.org/10.5391/JKIIS.2014.24.2.186
  13. K.A. Daltorio, A.D. Horchler, S. Gorb, R.E. Ritzmann and R.D. Quinn, "A Small Wall-Walking Robot with Compliant, Adhesive Feet", IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), Canada, pp. 152-159, 2005.
  14. Y. Zhang, T. Dodd, K. Atallah, and I. Lyne, "Design and optimization of magnetic wheel for wall and ceiling climbing robot," International Conference on Mechatronics and Automation (ICMA), pp. 1393-1398, 2010.
  15. Gye-do Park, Won-Kyo Seo, and Jang-Myung Lee, "moving robot distributed control system of CAN," Korea Institute of Intelligent Systems, vol. 20, no. 1, pp. 111-114, 2010.
  16. Sangfeel Kwak, Byung-Jae Choi, "Development of CAN(Controller Area Network) based Platform Model for Service Robots," Korea Institute of Intelligent Systems, vol. 23, no. 4, pp. 298-303, 2013. https://doi.org/10.5391/JKIIS.2013.23.4.298
  17. Taeseok Jin, "Tracking Path Generation of Mobile Robot for Interrupting Human Behavior," Korea Institute of Intelligent Systems, vol. 23, no. 5, pp. 460-465, 2013. https://doi.org/10.5391/JKIIS.2013.23.5.460
  18. DongWon Kim, Yugay Igor, EunSeok Kang, Seul Jung, "Design and Control of an Omni-directional Cleaning Robot Based on Landmarks," Korea Institute of Intelligent Systems, vol. 23, no. 2, pp. 100-106, 2013 . https://doi.org/10.5391/JKIIS.2013.23.2.100