The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.1
/
pp.86-99
/
2021
One of the methods to alleviate traffic congestion is to increase the efficiency of the roads by providing traffic condition information on road user and distributing the traffic. For this, reliability must be guaranteed, and quantitative real-time traffic speed prediction is essential. In this study, and based on analysis of traffic speed related to traffic conditions, historical data correlated with traffic flow were used as input. We developed an LSTM model that predicts speed in response to normal traffic conditions, along with a CNN-LSTM model that predicts speed in response to incidents. Through these models, we try to predict traffic speeds during the hour in five-minute intervals. As a result, predictions had an average error rate of 7.43km/h for normal traffic flows, and an error rate of 7.66km/h for traffic incident flows when there was an incident.
Predictive information on the freeway incident impacts can be a critical criterion in selecting travel options for users and in operating transportation system for operators. Provided properly, users can select time-effective route and operators can effectively run the system efficiently. In this study, a model is proposed to predict freeway incident impacts. The predictive model for incident impacts is based on short-term prediction. The proposed models are examined using MARE. The analysis results suggest that the models are accurate enough to be deployed in a real-world. The development of microscopic models to predict incident effects is expected to help minimize traffic delay and mitigate related social costs.
첨단교통정보시스템(ATIS)의 핵심 요소라 할 수 있는 동적경로안내 시스템(Dynamic Route Guidance System : DRGS)은 운전자가 목적지에 도착하기까지 실시간 교통정보를 토대로 최적경로를 안내해 줌으로써 날로 심화되어 가고 있는 교통혼잡을 최소화할 수 있으리라 기대를 모으고 있다. 특히 교통사고나 긴급도로공사 등으로 인해 발생하는 돌발적 교통혼잡하에서는 DRGS의 역할이 더욱 커질 것으로 예상되고 있다. 본 논문은 돌발적 교통혼잡하에서 보다 효과적인 DRGS의 경로 안내 알고리즘을 개발하는 데 그 목적이 있다. 이를 위해서 우선 하부구조기반(Infrastructure Based) DRGS와 개인차량기반(In-vehicle Based)DRGS의 장단점을 운전자, 교통행정당국, 그리고 교통체계관점에서 비교하였고, 시스템 아키텍쳐와 경로안내 알고리즘간의 상호관계를 규명하였다. 또한 효율적인 경로안내를 위해 사용자 평형(User Equilibrium)경로안내전략과 시스템최적화(System Optimal) 경로안내전략을 이상형 교통망(Idealistic Network)을 통해 비교분석하였다. 여기에는 현재 ITS-America에서 System Architecture 평가를 위해 사용한 INTEGRATION이라는 ITS Simulation Model과 그 통행저항함수를 사용하였다. 이를 토대로 돌발적 교통혼잡상황 아래서 사용자평형 경로안내를 제공할 경우 야기될 수 있는 Braess` Paradox 문제와, 총통행시간을 최소화하기 위한 시스템최적 경로안내를 제공할 경우 일어날 수 있는 사용자 호응도(User Compliance)문제를 동시에 고려한 적응형 동적경로안내 알고리즘을 개발하였다. 여기에는 돌발적 교통혼잡하에서 통행시간을 동적으로 예측하기 위해 이산형 확정적 대기행렬모형(Discrete Deterministic Queueing Model)이 사용되었다. 한편 알고리즘의 효율성을 평가하기 위해 이상형 교통망과, 실제 미국 Virginia 주의 Fairfax County에 소재한 주간 고속도로 66번(I-66)과 인접 교통망의 교통자료를 사용하여 각종 돌발교통 혼잡 상황을 전제로 한 Traffic Simulation과 정보제공시나\리오를 INTEGRATION Model을 이용해 실행하였다. 그 결과 적응형 알고리즘이 개개인의 최단시간 경로를 제공하는 사용자 평형 경로안내전략에 비해 교통혼잡도와 정체시간의 체류정도에 따라 3%에서 10%까지 전체통행시간을 절약할 수 있다는 결론을 얻었다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.1D
/
pp.133-139
/
2011
We built subway stops in order to meet demand. To do so, a standardized method is used to predict the demand. However, in some subway stops there are only few people moving around sparsely, but in some other stops there are too many people crammed in a crowd. The gap between forecasting and actual uses varies from 10% to more than 1,000%. This study is aimed to find out where this discrepancy between predicted vs. actual demand for urban rail transit comes from. Specifically, 40 subway stops in Seoul Metropolitan Area, which were opened last 10 years, are examined. This study suggests that, for better forecasting, we need to consider stops' locational characteristics as well as weekday commute-oriented exogenous factors. Locational characteristics includes; whether a stops is a terminal and/or weekend tourism node. There seems no "one size fits all" solution for transit demand forecasting; locational characteristics need to be reflected.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.1
/
pp.103-114
/
2023
This study collected various data of urban roadways to analyze the effect of travel speed change, and a GRU-based short-term travel speed prediction model was developed using such big data. The baseline model and the double exponential smoothing model were selected as comparison models, and prediction errors were evaluated using the RMSE index. The model evaluation results revealed that the average RMSE of the baseline model and the double exponential smoothing model were 7.46 and 5.94, respectively. The average RMSE predicted by the GRU model was 5.08. Although there are deviations for each of the 15 links, most cases showed minimal errors in the GRU model, and the additional scatter plot analysis presented the same result. These results indicate that the prediction error can be reduced, and the model application speed can be improved when applying the GRU-based model in the process of generating travel speed information on urban roadways.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2016.05a
/
pp.287-288
/
2016
선박과 선박간의 사고 위험도를 예측하는 교통정보 생성 기술을 해상교통관제센터에 적용하기에는 위험도 정보의 정확성에 한계가 있다. 또한 대상 해역에 대한 교통 패턴을 파악하는 밀집도 및 혼잡도와 같은 교통정보 생성 기술은 위험 우선순위 선박을 도출하는 것이 불가능하다. 복잡한 교통 패턴을 보이는 해상교통관제 해역에서 위험 선박을 인지하여 관제사의 관제 업무를 지원하기 위해서는 새로운 접근이 필요하다. 본 연구에서는 관제대상해역의 교통 상황을 총체적으로 파악하고 위험 선박을 사전에 인지할 수 있는 교통정보 생성을 위해서 기계학습 기법을 검토하였으며, 기존의 인공지능 한계를 극복하기 위한 딥러닝 프레임워크 도입을 검토하였다. 해상교통관제센터의 이미지, 메시지, 음성 등 다양한 형태의 연속적 자료들을 통합하고 이를 토대로 총체적인 분석을 통해 관제 업무를 지원할 수 있는 교통 상황 인지 정보를 생성할 수 있을 것으로 파악되었다. 빅데이터 기반의 기계학습은 보다 의미 있는 상황 인지 정보를 생성할 수 있기 때문에 이를 위한 관제 센터의 각종 데이터 통합이 필요하다.
VANET(Vehicular Ad-hoc Network)은 노드를 차량으로 가정하는 개념의 MANET(Mobile Ad-hoc Network)로서 노드의 빠른 이동으로 인해 급격한 토폴로지의 변화가 일어난다. 하지만 차량 노드의 이동은 도로 상에서 제한되어 있기 때문에 토폴로지에 대한 상대적인 예측 가능성을 가지고 있다. 이는 교통이 혼잡한 도로 환경에서 그리디 기법을 이용하여 다음 홉을 결정할 때 보다 높은 정확성을 제공할 수 있어 경유 노드의 수와 포워딩 실패를 최소화한다. 본 논문은 위기 정보와 운전 시스템 정보를 기반으로 하는 차량 간 통신 라우팅 최적화 기법을 제안하고 기존의 GPSR(Greedy Perimeter Stateless Routing) 기법과 SAR(Spatial Aware Routing) 기법과의 비교를 통해 효율성과 신뢰성의 향상을 증명하였다.
정적 통행배분모형은 도로 건설 등 공급부문에의 적용은 가능하나 통행량 및 혼잡의 시간적 공간적 변화를 고려하지 못하여 수요관리에서는 교통량 및 비용에 대한 관측치와 모형의 결과치가 상이한 문제가 있다. 이에 동적배분모형의 다양한 접근방법이 시도되고 있는데 그 중 Simulation기법을 개발하고자 하였다. 모형은 개별차량의 시공간상 움직임을 포현하고자 절대시간이 가장 이른 차량순으로 시뮬레이션을 함으로써 선입선출(FIFO)을 가능하게 하였다. 각 차량별 지체시간의 계산은 대기행렬 이론을 기초로 한 누적곡선법을 적용하여 도출하였다. 개별차량 Simulation은 시간축으로 확장된 연속류 Network상에서 각 차량의 도착 및 출발할 노드와 시간대를 결정하면 모든 지점에서 누적도착, 출발곡선을 그릴 수 있으며 이를 통해 도로구간에 있어 시간대별 통행시간, 밀도, 속도 등을 파악할 수 있다. 또한 합류부의 용량와 와해현상과 분류부의 용량변화현상 제약 및 Queue길이 제약이 이루어지도록 하였다. 개발된 모형의 검증은 영동대교 북단 강변도로 진출입부 자료를 실측하여 사용하였다. 모형은 합류부 용량와해의 적용 전과 후의 결과를 각각 실측치와 비교하였다. 용량와해현상을 적용한 모형에서 MAPE 10%미만의 우수한 예측력을 보였다. 이는 누적곡선을 이용한 Simulation모형이 현실에 가까움을 의미하는 것이며, 합류부 용량와해현상의 관계식을 보다 정교하게 도출하고 분류부에도 이를 적용한다면 모형의 예측력은 더욱 향상될 것으로 보인다.
Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
Journal of Intelligence and Information Systems
/
v.20
no.1
/
pp.121-131
/
2014
Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).
좁은 ITS(Intelligent Transportation Systems) 대역에서는 채널 혼잡을 피하는 것이 필수적이다. 눈에 띄는 변화가 있을 때만 차량 운동을 보고하는 것은 대역폭 사용을 줄이기 위한 표준화된 접근 방식이다. 그러나 셀룰러 V2X(Vehicle-to-Everything) 통신에서 주기적인 비콘의 빈번한 누락으로 인한 비주기성은 자원 낭비와 자원 스케쥴링의 안정성 문제를 제기한다. 이에 대해 이 논문에서는 자동차의 운동이 물리적 특성에 의해 제약을 받기 때문에 딥러닝 기반 체계로 대부분의 메시지 생성 시간을 정확하게 예측할 수 있다는 것을 보여준다. 제안된 예측 방법은 통상적인 도로주행 시 94.9%의 정확도를 달성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.