• Title/Summary/Keyword: 도로시설

Search Result 1,174, Processing Time 0.024 seconds

철도의 환경 친화성 분석에 대한 연구;대기오염물질 배출량 및 에너지 소비율 중심으로

  • Kim, Hui-Man
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.11a
    • /
    • pp.34-39
    • /
    • 2006
  • 1. 철도, 도로, 항공, 해운 등 교통수단별 현황을 조사한 결과, 현재까지의 교통정책이 도로교통 우선 위주였기 때문에 철도는 뛰어난 환경성 및 경제성을 가지고 있음에도 불구하고 수송분담율이 비교적 저조한 편이었다. 그러나, 향후 정부의 사회기반시설 구축에 있어서 국가 기간 철도망 확대와 대도시 지하철 및 경량전철 건설을 통한 도심철도망과 간선철도망의 연결 등을 통하여 철도의 이용이 훨씬 용이해질 것으로 보이며 이에 따라 철도의 이용률도 크게 상승할 것으로 예상된다. 2. 교통수단별 일반현황은 다음과 같다. 1) 철도교통은 여객수송량이 다소 증가하고 있는 추세였는데, 2004년 KTX의 개통으로 인하여 여객수송량이 급증하였으나, 화물수송은 약간 감소하는 추세이다. 2) 도로교통은 공로의 경우 이용량이 크게 감소하고 있으나, 자가용의 경우에는 승용차의 급증에 의하여 도로의 분담률이 증가하고 있다. 그러나, 도로망의 확충이 자동차의 증가량을 따르지 못하는 것과 자동차가 도시에 밀집됨에 따른 교통체증에 따라 자가용 차량의 1일 평균 주행거리가 짧아지는 등 수송량이 크게 증가하지는 않고 있다. 3. 각 교통수단별 환경경제성을 조사한 결과는 다음과 같았다. 1) 단위수송량당 에너지 소비율은 여객의 경우 철도가 75.97kcal/인 km에 불과한 반면에 버스는 415.43, 택시는 1,192.24kcal/인 km에 달하여 각각 철도의 5.5배 및 15.7배나 많은 에너지를 소비하는 것으로 나타났다. 화물의 경우에도 철도는 105.98kcal/톤 km에 불과한 반면에 도로는 1,674.21kcal/톤 km에 달하여 철도의 무려 15.8배의 에너지를 사용하는 것으로 나타나, 철도가 에너지 효율성 면에서 도로 교통수단보다 월등히 앞서는 친환경적이면서 경제적인 교통수단임을 알 수 있다. 2) 도로와 철도의 단위수송량 당 CO의 배출량은 도로가 1,531.2kg/백만인 km로 철도의 167.4kg/백만인 km에 비하여 9배나 되었다. 그러나, 탄화수소의 경우는 도로가 216.5kg/백만인 km으로 철도의 68.0kg/백만인 km의 3배를 넘는다. 미세먼지의 경우는 도로가 철도보다 약간 더 많은 수준이었으나, NOx와 $SO_2$는 오히려 철도가 오히려 약간 더 높게 나타났다.

  • PDF

Development of Cognition Character Model for Road Safety Facilities on Vertical Alignment Sections (종단선형구간에서의 도로안전시설물 인지특성 모형개발)

  • Lee, Soo-Beom;Kim, Jang-Wook;Kwon, Hyuk-Min
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.73-84
    • /
    • 2005
  • Highway design criteria are considering roadway safety and smooth driving maneuver. However, a certain highway alignment within design criteria often leads drivers to undesirable situation due to the differences between the original intention of design criteria and the unintended result of drivers' cognition. The differences between them often result in traffic accidents. In order to reduce accident process, highway safety facilities are installed on those roadway sections. However, the relationship between highway environments and human factors has not been deeply studied in Korea. In this study. vertical roadway sections are constructed with 3-D graphical tools. This vertical roadway sections are simulated on a driving simulator in order to identify the differences of drivers' cognition on different roadway environments. Based upon the collected data from the driving simulator, canonical correlation analysis and canonical discriminant analysis of quantification theory II have been performed in order to figure out impacting factors on the degree of roadway safety. Also, based upon quantification theory I. the relationship between roadway safety facilities and the degree of safety has been analyzed.

A Study on Economic Feasibility of Highway Maintenance Considering Carbon Amount by Using KPRP (Korea Pavement Research Program) (탄소량을 고려한 도로 유지보수 경제성에 관한 연구: KPRP (Korea Pavement Research Program) 활용)

  • Nguyen, Dinh Thanh;Choi, Jae-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.879-890
    • /
    • 2017
  • The US Pavement Design method (AASHTO) and HDM-4, a road pavement maintenance decision system, are not suitable for domestic pavement design, construction and maintenance. KPRP(Korea Pavement Research Program) has been developed to reflect Korea's environmental conditions and vehicle characteristics, thereby, extending pavement life. The main objective of this study is to select the best alternative through Life Cycle Cost $CO_2$ (LCCC) calculations among three representative maintenance strategies using KPRP design software since the environment cost resulting from the extended pavement life will also differ. The analysis of this study illustrates that cumulative carbon emissions for 40 years in alternative 2 (Cutting and Overlaying at Year 30) is the lowest option among them, and the basic cost of $CO_2$ emission by various road maintenance and repair work can be used for suggesting an optimal maintenance strategy for highway agency.

Efficient Methods for Road Sign Database Construction (도로표지의 효율적인 데이터베이스 구축방안)

  • Kim, Eui-Myoung;Cho, Du-Young;Chong, Kyu-Soo;Kim, Seong-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • Road signs are part of the traffic facilities intended to guide drivers to their destinations in a safe and comfortable manner. Due to the creation of new routes, changes to the old routes, and the deterioration of road signs, road signs do require efforts to do ongoing field investigations and put the results in a database. The purpose of this study was to propose methodologies to do field investigations and build a database for road signs efficiently. For that purpose, a mobile mapping system was designed for field investigations. The designed mobile mapping system was comprised of three cameras to produce image information about road signs, GPS/IMU/DMI to obtain information about the position and attitude of a vehicle, and a laser scanner to generate information about the locations of road signs and routes. Also proposed in the study was a procedure to automatically detect the areas of road signs in the road signs images and recognize their characters.

Development of a Crash Cushion Using the Frictional and Inertial Energy by Computer Simulation (컴퓨터 시뮬레이션에 의한 관성과 마찰 에너지를 이용하는 충격흡수시설의 개발)

  • Kim, Dong-Seong;Kim, Kee-Dong;Ko, Man-Gi;Kim, Kwang-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.23-30
    • /
    • 2009
  • Crash cushions are protective devices that prevent errant vehicles from impacting on fixed objects. This function is accomplished by gradually decelerating a vehicle to a safe stop in a relatively short distance. Commonly used crash cushions generally employ one of two concepts to accomplish this function. The first concept involves the absorption of the kinetic energy of a moving vehicle by crushable or plastically deformable materials and the other one involves the transfer of the momentum of a moving vehicle to an expendable mass of material located in the vehicle's path. Crash cushions using the first concept are generally referred to as compression crash cushions and crash cushions using the other concept are generally referred to as inertial crash cushion. The objective of this research is the development of a compression-type crash cushion by employing the two concepts simultaneously. To minimize the number of full-scale crash tests for the development of the crash cushion, preliminary design guide considering inertial and frictional energy absorption was constructed and computer simulation was performed. LS-DYNA program, which is most widely used to analyze roadside safety features, was used for the computer simulation. The developed crash cushion satisfied the safety evaluation criteria for various impact conditions of CC2 performance level in the Korean design guide.

A Basic Experimental Study on the Heat Energy Harvesting for Green SOC (녹색 사회기반시설의 열 에너지 하베스팅을 위한 기초실험 연구)

  • Jo, Byung-Wan;Lee, Duk-Hee;Lee, Dong-Yoon;Kim, Yoon-Ki
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.93-101
    • /
    • 2010
  • As the number of indispensable needs of clean energy increases due to the green new deal revolution, the possibility of heat energy harvesting from the surrounding infrastructures such as a railroad or highway was verified. In order to find more efficient usage of a heat source, the possibility of transforming heat into electricity were confirmed using Bi-Te type thermoelectric element, and electrical quality were tested with experiments of different heat source and environmental change in the surrounding infrastructures. After careful experiments, the possibility of collecting thermal energy and findings of the heat temperature change in infrastructrue are verified with a result of obtaining almost 20.82W in 70 celcius($^{\circ}C$) temperature differences and $1m^2$ surface area. Consequently, the ratio of heat temperatiure change and transforming surface area is the most crucial factor in the harvesting heat energy, and reducing thermal loss and improving thermal convection as well as transformation efficiency of thermoelectric element is required to get more efficient and durable generation.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

An Input/Output analysis of the transportation industry for evaluating its economical contribution and ripple effect - Forecasting the I-O table in 2003~2009 - (교통부문의 경제적 기여도 및 파급효과 도출을 위한 산업연관분석 연구 - 2003~2009년 산업연관표 중심으로 -)

  • Lim, Siyeong;Kim, Seok;Oh, Eun-ho;Lee, Kyo Sun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.12-20
    • /
    • 2015
  • Construction industry has played a pivotal role in the national economy, but the crisis situation of a construction industry has been worse due to the lack of recognition of the contribution of a construction industry. In particular, the transport sector is responsible for a critical function in the movement of humans and material resources, and has a profound impact on national competitiveness and the peoples' welfare, which requires quantitative analysis. In this study, economic contribution and impact of the transportation sector are measured based on the input-output model. Road and railway facilities account for 1.03% and 0.165% of the total industry respectively, and consist of a final demand and total output. Although value-added inducing effect is small, production inducing effect and backward linkage effect has been high. The results in this study will be used as the basic information for validity of investment and policy decisions.

A Spatial Analysis about Arrival Delay and Dispatch Distribution of the 119 Rescue-Aid Service utilizing GIS - Gyeongsangbuk-Do Case Study - (GIS를 활용한 119 구조구급서비스의 도착지체 및 출동배치에 대한 공간분석 - 경상북도 사례 연구 -)

  • Oh, Chang-Seok;Lee, Seungwon;Lee, Inmook;Kho, Seung-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.13-22
    • /
    • 2012
  • The 119 emergency rescue-aid service operated by Korean government is a very valuable in a society and its importance is growing in Korea as an aging society. Especially, the emergency vehicle's arrival time to accidents place is an important variable which affects initial emergency measure for patients and it depends on the road network attributes, such as emergency service station's location, accessibility to accidents place and so on. This study aims to analysis the emergency vehicles' arrival delay and the dispatch station in the viewpoint of efficiency utilizing the real rescue-aid activity data. We analyzed the dispatch distribution of the emergency rescue-aid service at first. And we analyzed high accident rate locations not involved in the fixed radius of rescue-aid service stations and display GIS map showing regions have been delayed. The input data of the road network speed is based on the KTDB (Korea Transportation Database) and historical rescue-aid data is from Gyeongsangbuk-do's fire service headquarters.

Transport and management of diffuse pollutants using low impact development technologies applied to highly urbanized land uses (고도화 도시지역에 적용된 LID 기법의 비점오염물질 관리 및 이동)

  • Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2019
  • This study was conducted to understand factors affecting TSS and heavy metals transport on the road, parking lot and roof. During storm events, heavy metals, which were mostly attached to TSS, were also transported when TSS was washed off in the road, parking lot and roof. This finding may be supported by the significant correlations between TSS load and total and soluble heavy metals load including Cr, Fe, Cu, and Pb (Pearson r value: 0.52 to 0.73; probability p value<0.01). Generation and transport of TSS and heavy metals were greater in the road and parking lot compared to the roof due to vehicular activities, slope and greater catchment areas of these sites. It was found that TSS transport during peak flows of storm events ranges from 65% to 75% implying that by controlling peak flows, TSS transportation to nearby water bodies may be decreased. Depending on the target TSS and heavy metal reduction, sizing of low impact development (LID) technologies and green infrastructures (GI) such as infiltration trench, tree box filter, and rain garden may be calculated. Future researchers were recommended to assess the limitations of the systems and determine the design considerations for these types of facilities.