DOI QR코드

DOI QR Code

Change of dry matter and nutrients contents in plant bodies of LID and roadside

도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화

  • Lee, YooKyung (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Choi, Hyeseon (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Jeon, Minsu (Department of Civil and Environmental Engineering, Kongju National University) ;
  • Kim, Leehyung (Department of Civil and Environmental Engineering, Kongju National University)
  • 이유경 (공주대학교 건설환경공학과) ;
  • 최혜선 (공주대학교 건설환경공학과) ;
  • 전민수 (공주대학교 건설환경공학과) ;
  • 김이형 (공주대학교 건설환경공학과)
  • Received : 2021.01.21
  • Accepted : 2021.02.03
  • Published : 2021.02.28

Abstract

The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.

도시지역의 강우유출수를 관리하기 위하여 자연기반해법의 LID 및 그린인프라 적용이 늘고 있다. 식물이 LID 시설에 적용되는 이유는 광합성을 이용하여 오염물질 저감효율을 높이고, 시설 내부 오염물질 축적을 줄여 유지관리 기능을 향상시키기 위해서이다. 그러나 LID 시설 내부에서 작용하는 식물의 오염물질 흡입능력의 불확실성으로 인하여 식재 선정시 어려움이 많다. 따라서 본 연구는 도로변, LID 시설 및 조경공간에 식재되어있는 식물의 건물률 및 영양물질 함량을 비교하여 오염물질 제거기작을 분석하기 위해 수행되었다. 실험대상인 7종의 초본류, 관목류 및 교목류의 월별 건물률은 60~90% 범위를 보였다. 초본류 몸체 내 TN 함량은 여름철까지 지속적으로 성장하다가 감소하는 추세를 보였다. 그러나 관목류와 교목류는 초봄과 늦여름에 높은 TN 함량을 보였다. 패랭이를 제외한 LID 시설에 식재된 모든 식물에서 높은 TP 함량을 보였다. 이는 LID의 식물이 인 제거에 효율적이라는 것을 의미한다. 식물별 영양염류 함량은 유입수 농도에 영향을 끼치는 도시환경에 크게 의존하는 것으로 나타났다. 따라서 이러한 결과들은 향후 LID 적용 시 식생 선정에 있어 유용한 자료로 활용 가능할 것으로 판단된다.

Keywords

References

  1. Choi, H., Hong, J., Lee, S., & Kim, L. H. (2016). Assessment of Salt Resistance and Performances of LID Applicable Plants. J. of Wetlands Research, 18(2), 201-207. DOI: 10.17663/JWR.2016.18.2.201
  2. Choi, H. (2017). Impact Assessment of Plant Growth and Pollution Removal Ability of LID Plants against Deicing Agents(CaCl2). Thesis of Master of Sciences in Kongju National University.
  3. Choi, J., Maniquiz-Redillas, M. C., Hong, J., & Kim, L. H (2017). Development of a hybrid constructed wetland system for treating stormwater runoff from road. Desalination and Water Treatment, 63, 397-403. DOI: 10.5004/dwt.2017.11443
  4. Choi, J., Maniquiz-Redillas, M. C., Hong, J., & Kim, L. H. (2018). Selection of cost-effective Green Stormwater Infrastructure (GSI) applicable in highly impervious urban catchments. KSCE J. of Civil Engineering, 22(1), 24-30. DOI: 10.1007/s12205-017-2461-1
  5. Choi, J., Son, Y., Lee, S., Lee, Y., & Kim, L. H. (2013). Development of tree box filter LID system for treating road runoff. J. of Wetlands Research, 15(3), 407-412. DOI: 10.17663/JWR.2013.15.3.407
  6. Choi, J., Hong, J., Kang, H., & Kim, L. H. (2016). Characteristics of stormwter runoff from highways with unit traffic volume. J. of Wetlands Research, 18(3), 275-281. DOI: 10.17663/JWR.2016.18.3.275
  7. Choi, H., Hong, J., Jeon, M., Geronimo, F. K., & Kim, L. H (2019). Assessment of Water Circulation and Hydro-characteristics with LID techniques in urbanized areas. J. of Wetlands Research, 21(3), 191-198. DOI: 10.17663/JWR.2019.21.3.191
  8. Choi, H., Hong, J., Geronimo, F. K. F., & Kim, L. H. (2019). Assessment of environmental impacts of LID technologies on vegetation. Membrane Water Treatment, 10(1), 39-44. DOI: 10.12989/mwt.2019.10.1.039
  9. Choi, H., Geronimo, F. K., Hong, J., & Kim, L. H. (2019). Assessment of the influence of urban stormwater runoff on the growth of Spiraea prunifolia var. simpliciflora. Desalination and Water Treatment, 158, 225-232. DOI: 10.5004/dwt.2019.24253
  10. Flores, P. E. D., Maniquiz-Redillas, M. C., Geronimo, F. K. F., Alihan, J. C. P., & Kim, L. H. (2016). Transport of nonpoint source pollutants and stormwater runoff in a hybrid rain garden system. J. of Wetlands Research, 18, 481-487. DOI: 10.17663/JWR.2016.18.4.481
  11. Geronimo, F. K. F., Maniquiz-Redillas, M. C., Hong, J., & Kim, L. H. (2019). Evaluation on the suspended solids and heavy metals removal mechanisms in bioretention systems. Membrane Water Treatment, 10(1), 91-97. DOI: 10.12989/mwt.2019.10.1.091
  12. Gurung, S. B., Geronimo, F. K., Hong, J., & Kim, L. H. (2018). Application of indices to evaluate LID facilities for sediment and heavy metal removal. Chemosphere, 206, 693-700. DOI: 10.1016/j.chemosphere.2018.05.077
  13. Hong, J. S., Maniquiz-Redillas, M. C., Kim, R. H., Lee, S. H., & Kim, L. H. (2015). Performance evaluation of water circulation facilities with infiltration and retention functions. Ecology and Resilient Infrastructure, 2(4), 305-310. DOI: 10.17820/eri.2015.2.4.305
  14. Hong, J. S., & Kim, L. H. (2016). Assessment of performances of low impact development (LID) facilities with vegetation. Ecology and Resilient Infrastructure, 3(2), 100-109. DOI: 10.17820/eri.2016.3.2.100
  15. Lee, S., Choi, J., Hong, J., Choi, H., & Kim, L. H. (2016). Cost-effective assessment of filter media for treating stormwater runoff in LID facilities. J. of Wetlands Research, 18(2), 194-200. DOI: 10.17663/JWR.2016.18.2.194
  16. Lee, S. Y., Maniquiz, M. C., Choi, J. Y., & Kim, L. H. (2009). Determination of EMCs for rainfall ranges from transportation landuses. J. of Wetlands Research, 11(2), 67-76.
  17. Marla C.Maniquiz. (2009). Urban Runoff Treatment by means of an Infiltration System during Rainfall Events. Thesis of Master of Science, Kongju National University.
  18. Maniquiz-Redillas, M. C., & Kim, L. H. (2016). Understanding the factors influencing the removal of heavy metals in urban stormwater runoff. Water Science and Technology, 73(12), 2921-2928. DOI: 10.2166/wst.2016.153
  19. Rural Development Adminstration (RDA). 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea.
  20. Son, H. G., Lee, S. Y., Maniquiz, M. C., & Kim, L. H. (2009). Characteristics of NPS pollutants and treatment of stormwater runoff in paved area during a storm. J. of Wetlands Research, 11(2), 55-66.
  21. Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G., & Zuberer, D. A. (2005). Principles and applications of soil microbiology (No. QR111 S674 2005). Pearson.
  22. Yu, G., Choi, J., Hong, J., Moon, S., & Kim, L. H. (2015). Development and evaluation of bioretention treating stormwater runoff from a parking lot. J. of Wetlands Research, 17(3), 221-227. DOI: 10.17663/JWR.2015.17.3.221