• Title/Summary/Keyword: 델타-시그마

Search Result 101, Processing Time 0.025 seconds

Optimized Sigma-Delta Modulation Methodology for an Effective FM Waveform Generation in the Ultrasound System (효율적인 주파수 변조된 초음파 파형 발생을 위한 최적화된 시그마 델타 변조 기법)

  • Kim, Hak-Hyun;Han, Ho-San;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.429-440
    • /
    • 2007
  • A coded excitation has been studied to improve the performance for ultrasound imaging in term of SNR, imaging frame rate, contrast to tissue ratio, and so forth. However, it requires a complicated arbitrary waveform transmitter for each active channel that is typically composed of a multi-bit Digital-to-Analog Converter (DAC) and a linear power amplifier (LPA). Not only does the LPA increase the cost and size of a transmitter block, but it consumes much power, increasing the system complexity further and causing a heating-up problem. This paper proposes an optimized 1.5bit fourth order sigma-delta modulation technique applicable to design an efficient arbitrary waveform generator with greatly reduced power dissipation and hardware. The proposed SDM can provide a required SQNR with a low over-sampling ratio of 4. To this end, the loop coefficients are optimized to minimize the quantization noise power in signal band while maintaining system stability. In addition, the decision level for the 1.5 bit quantizer is optimized for a given input waveform, which results in the SQNR improvement of more than 5dB. Computer simulation results show that the SQNR of a FM(frequency modulated) signal generated by using the proposed method is about 26dB, and the peak side-lobe level (PSL) of its compressed waveform on receive is -48dB.

Design of a CMOS Frequency Synthesizer for FRS Band (UHF FRS 대역 CMOS PLL 주파수 합성기 설계)

  • Lee, Jeung-Jin;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.941-947
    • /
    • 2017
  • This paper reports a fractional-N phase-locked-loop(PLL) frequency synthesizer that is implemented in a $0.35-{\mu}m$ standard CMOS process and generates a quadrature signal for an FRS terminal. The synthesizer consists of a voltage-controlled oscillator(VCO), a charge pump(CP), loop filter(LF), a phase frequency detector(PFD), and a frequency divider. The VCO has been designed with an LC resonant circuit to provide better phase noise and power characteristics, and the CP is designed to be able to adjust the pumping current according to the PFD output. The frequency divider has been designed by a 16-divider pre-scaler and fractional-N divider based on the third delta-sigma modulator($3^{rd}$ DSM). The LF is a third-order RC filter. The measured results show that the proposed device has a dynamic frequency range of 460~510 MHz and -3.86 dBm radio-frequency output power. The phase noise of the output signal is -94.8 dBc/Hz, and the lock-in time is $300{\mu}s$.

A Stereo Audio DAC with Asymmetric PWM Power Amplifier (비대칭 펄스 폭 변조 파워-앰프를 갖는 스테레오 오디오 디지털-아날로그 변환기)

  • Lee, Yong-Hee;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.44-51
    • /
    • 2008
  • A stereo audio digital-to-analog converter (DAC) with a power amplifier using asymmetric pulse-width modulation (PWM) is presented. To adopt class-D amplifier mainly used in high-power audio appliances for head-phones application, this work analyzes the noise caused by the inter-channel interference during the integration and optimizes the design of the sigma-delta modulator to decrease the performance degradation caused by the noise. The asymmetric PWM is implemented to reduce switching noise and power loss generated from the power amplifier. This proposed architecture is fabricated in 0.13-mm CMOS technology. The proposed audio DAC including the power amplifier with single-ended output achieves a dynamic range (DR) of 95-dB dissipating 4.4-mW.

A Low Jitter Dual Output Frequency Synthesizer Using Phase-Locked Loop for Smart Audio Devices (위상고정루프를 이용한 낮은 지터 성능을 갖는 스마트 오디오 디바이스용 이중 출력 주파수 합성기 설계)

  • Baek, Ye-Seul;Lee, Jeong-Yun;Ryu, Hyuk;Lee, Jongyeon;Baek, Donghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-35
    • /
    • 2016
  • A Low jitter dual output frequency synthesizer for smart audio devices is described in this paper. It has been fabricated in a 1.8 V Dongbu $0.18-{\mu}m$ CMOS process. Output frequency is controlled by 3 rd order Sigma-Delta Modulation and digital divider. The frequency synthesizer has a size of $0.6mm^2$, frequency range of 0.6-200 MHz, loop bandwidth of 350 kHz, and rms jitter of 11.4 ps-21.6 ps.

Design of Low Power Sigma-delta ADC for USN/RFID Reader (USN/RFID Reader용 저전력 시그마 델타 ADC 변환기 설계에 관한 연구)

  • Kang, Ey-Goo;Hyun, Deuk-Chang;Hong, Seung-Woo;Lee, Jong-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.800-807
    • /
    • 2006
  • To enhance the conversion speed more fast, we separate the determination process of MSB and LSB with the two independent ADC circuits of the Incremental Sigma Delta ADC. After the 1st Incremental Sigma Delta ADC conversion finished, the 2nd Incremental Sigma Delta ADC conversion start while the 1st Incremental Sigma Delta ADC work on the next input. By determining the MSB and the LSB independently, the ADC conversion speed is improved by two times better than the conventional Extended Counting Incremental Sigma Delta ADC. In processing the 2nd Incremental Sigma Delta ADC, the inverting sample/hold circuit inverts the input the 2nd Incremental Sigma Delta ADC, which is the output of switched capacitor integrator within the 1st Incremental Sigma Delta ADC block. The increased active area is relatively small by the added analog circuit, because the digital circuit area is more large than analog. In this paper, a 14 bit Extended Counting Incremental Sigma-Delta ADC is implemented in $0.25{\mu}m$ CMOS process with a single 2.5 V supply voltage. The conversion speed is about 150 Ksamples/sec at a clock rate of 25 MHz. The 1 MSB is 0.02 V. The active area is $0.50\;x\;0.35mm^{2}$. The averaged power consumption is 1.7 mW.

3rd SDM with FDPA Technique to Improve the Input Range (입력 범위를 개선한 FDPA 방식의 3차 시그마-델타 변조기)

  • Kwon, Ik-Jun;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.18 no.2
    • /
    • pp.192-197
    • /
    • 2014
  • In this paper, $3^{rd}$ SDM with FDPA(Feedback Delay Pass Addition) technique to improve the input range is proposed. Conventional architecture with $3^{rd}$ transfer function is just made as adding a digital delay path in $2^{nd}$ SDM architecture. But the input range is very small because feedback path into the first integrator is increased. But, proposed architecture change feedback path into the first integrator to the second integrator, so input range could be improved about 9dB. The $3^{rd}$ SC SDM with only one operational amplifier was implemented using double-sampling technique. Simulation results for the proposed SDM designed in $0.18{\mu}m$ CMOS technology with power supply voltage 1.8V, signal bandwidth 20KHz and audible sampling frequency 2.8224MHz show SNR(Signal to Noise Ratio) of 83.8dB, the power consumption of $700{\mu}W$ and Dynamic Range of 82.8dB.

Design of a Wireless Self-Powered Temperature Sensor for UHF Sensor Tags (무선 전력 구동 센서 태그 내장형 온도센서의 설계)

  • Kim, Hyun-Sik;Cho, Jung-Hyun;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.1-6
    • /
    • 2007
  • Wireless Self-Powered Temperature Sensor for UHF Sensor Tags which are basic device for construction of ubiquitous sensor network is proposed. The key parameters of the target specification are resolution of $0.1\;^{\circ}C$ per output bit, below 1.5 V of operating voltage and below 5 uW of power consumption during sensing operation. Temperature sensor circuit consists of PTAT current generator, band gap reference circuit generating both reference voltage and current, Sigma-Delta Converter, and Digital Counter. Simulated maximum resolution was $0.23\;^{\circ}C/bit$ in 11-bit output. The proposed temperature sensor was fabricated by using a 0.25 m CMOS process. The chip area is $0.32\;{\times}\;0.22\;mm$ and the operating frequency is 2 MHz. Measured resolution from fabricated temperature sensor was $4\;^{\circ}C/bit$ in 8-bit output for the temperature range from $10^{\circ}C$ to $80^{\circ}C$.

A Design of Wide-Range Digitally Controlled Oscillator with an Active Inductor (능동 인덕터를 이용한 광대역 디지털 제어 발진기의 설계)

  • Pu, Young-Gun;Park, An-Soo;Park, Hyung-Gu;Park, Joon-Sung;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a wide tuning range, fine-resolution DCO (Digitally Controlled Oscillator) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. In addition, the DCO gain needs to be calibrated digitally to compensate for gain variations. To cover the wide tuning range, an automatic three-step coarse tuning scheme is proposed. The DCO total frequency tuning range is 1.4 GHz (2.1 GHz to 3.5 GHz), it is 58 % at 2.4 GHz. An effective frequency resolution is 0.14 kHz/LSB. The proposed DCO is implemented in 0.13 ${\mu}m$ CMOS process. The total power consumption is 6.6 mW from a 1.2 V supply voltage. The phase noise of the DCO output at 2.4 GHz is -120.67 dBc/Hz at 1 MHz offset.

Third order Sigma-Delta Modulator with Delayed Feed-forward Path for Low-power Operation (저전력 동작을 위한 지연된 피드-포워드 경로를 갖는 3차 시그마-델타 변조기)

  • Lee, Minwoong;Lee, Jongyeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.57-63
    • /
    • 2014
  • This paper proposes an architecture of $3^{rd}$ order SDM(Sigma-Delta Modulator) with delayed feed-forward path in order to reduce the power consumption and area. The proposed SDM improve the architecture of conventional $3^{rd}$ order SDM which consists of two integrators. The proposed architecture can increase the coefficient values of first stage doubly by inserting the delayed feed-forward path. Accordingly, compared with the conventional architecture, the capacitor value($C_I$) of first integrator is reduced by half. Thus, because the load capacitance of first integrator became the half of original value, the output current of first op-amp is reduced as 51% and the capacitance area of first integrator is reduced as 48%. Therefore, the proposed method can optimize the power and the area. The proposed architecture in this paper is simulated under conditions which are supply voltage of 1.8V, input signal 1Vpp/1KHz, signal bandwidth of 24KHz and sampling frequency of 2.8224MHz in the 0.18um CMOS process. The simulation results are SNR(Signal to Noise Ratio) of 88.9dB and ENOB(Effective Number of Bits) of 14-bits. The total power consumption of the proposed SDM is $180{\mu}W$.

A Design of Wideband Frequency Synthesizer for Mobile-DTV Applications (Mobile-DTV 응용을 위한 광대역 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.40-49
    • /
    • 2008
  • A Frequency synthesizer for mobile-DTV applications is implemented using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors are chosen for VCO core to reduce phase noise. The measurement result of VCO frequency range is 800MHz-1.67GHz using switchable inductors, capacitors and varactors. We use varactor bias technique for the improvement of VCO gain linearity, and the number of varactor biasing are minimized as two. VCO gain deterioration is also improved by using the varactor switching technique. The VCO gain and interval of VCO gain are maintained as low and improved using the VCO frequency calibration block. The sigma-delta modulator for fractional divider is designed by the co-simualtion method for accuracy and efficiency improvement. The VCO, PFD, CP and LF are verified by Cadence Spectre, and the sigma-delta modulator is simulated using Matlab Simulink, ModelSim and HSPICE. The power consumption of the frequency synthesizer is 18mW, and the VCO has 52.1% tuning range according to the VCO maximum output frequency. The VCO phase noise is lower than -100dBc/Hz at 1MHz at 1MHz offset for 1GHz, 1.5GHz, and 2GHz output frequencies.