• 제목/요약/키워드: 데이터 수익률

검색결과 151건 처리시간 0.027초

An Estimation of VaR under Price Limits

  • Park, Yun-Sook;Yeo, In-Kwon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권4호
    • /
    • pp.825-835
    • /
    • 2004
  • In this paper, we investigate the estimation of the value at risk(VaR) when stock prices are subjected to price limits. The mixture of probability mass functions and beta density functions is proposed to derive the distribution of asset returns. The analyses of real data show that the proposed distribution is appropriate to explain the VaR when the price limits exist in the data.

  • PDF

수익률 측정 통계량에 따른 네트워크 형태의 차이에 관한 연구 (Study on the Differences in Yield Network Structures)

  • 최인수;김우창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.522-523
    • /
    • 2024
  • 상호의존성을 검증하기 위해 통계적 측정치를 사용한 심층 분석을 통해 섹터 기반 상장지수펀드를 중심으로 금융 네트워크의 불일치를 분석한다. 최소 스패닝 트리, p 값 기반 네트워크와 같은 방법론을 채택하여 가격 기반 불일치를 조사하여 금융 데이터 내의 기본 네트워크 구조를 파악합니다. 우리의 주요 기여는 다양한 측정치와 네트워크 분석을 사용하여 금융 시장에 대한 다양한 통찰력을 제공하는 방법을 보여주는 것이다.

빅데이터 분석기법을 활용한 숙박업체 운영 개선 방안에 대한 연구 (A Study on Improvement of Pension Operation and Management using Big Data Analysis Techniques)

  • 윤선희
    • 문화기술의 융합
    • /
    • 제7권4호
    • /
    • pp.815-821
    • /
    • 2021
  • 빅데이터의 장점은 인터넷상의 대량의 데이터를 수집하여 가치 있는 데이터를 정제하여 사용하는 것이다. 즉, 비정형 데이터를 사용자가 필요한 관점에서 분석하여 활용할 수 있도록 가공하는 것이다. 본 논문은 실생활에 밀접하게 적용되어 마케팅에 활용할 수 있는 비정형 데이터를 기반으로 하며 실험 대상은 서울에서 한 시간 거리의 수도권에 있는 숙박업체를 모델로 하여 빅데이터를 사용자가 필요한 관점에서 분석하여 매출 증대, 비용 감소 및 수익률 증가 등의 효과를 나타낸 실험으로 소셜네트워크 등의 빅데이터를 분석하는 과정에서 입력되는 데이터가 숙박 정보로써 활용할 수 있는 데이터인지를 판별하여 필터링하는 시스템을 제안하여 숙박률의 향상 및 공실률을 감소시킬 수 있는 마케팅 전략을 구축하고자 한다.

자산가격의 오류는 인플레이션의 착각 때문인가? (Is Mispricing in Asset Prices Due to the Inflation Illusion?)

  • 이봉수
    • KDI Journal of Economic Policy
    • /
    • 제36권3호
    • /
    • pp.25-60
    • /
    • 2014
  • 본 논문에서는 주식수익률과 인플레이션 그리고 주택수익률과 인플레이션의 음의 관계가 인플레이션의 착각에 기인하는 것인가를 연구하고자 한다. 우선 자산가격의(즉, 주식가격과 주택가격의) 오류 부분을 선형 또는 비선형 현재가치 모델에 기인해 구해 내고 인플레이션이 이러한 오류 부분을 설명할 수 있는지를 세 개의 국가(즉, 미국, 영국 그리고 한국)의 데이터를 통해서 살펴보고자 한다. 다음에는 양의 인플레이션과 음의 인플레이션이 오류 부분에 비대칭적인 영향을 미치는지를 조사하고자 한다. 그 결과 양의 인플레이션과 음의 인플레이션이 모두 음의 효과를 가지지는 않는다는 사실을 발견하였는데, 이는 인플레이션이 이러한 오류 부분을 설명하지는 않는다는 것을 의미한다. 대신 소비자 심리에 기인한 행동적 요소가 자산가격의 오류에 크게 기여함을 발견하였다.

  • PDF

대규모 외생 변수와 Deep Neural Network를 사용한 금융 시장 예측의 성능 향상에 관한 연구 (A Study on Improving the Performance of Financial Market Forecasting Using Large Exogenous Variables and Deep Neural Network)

  • 천성길;이주홍;최범기;송재원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.435-438
    • /
    • 2020
  • 시장예측 문제를 해결하기 위하여 과거부터 꾸준한 연구가 진행되어왔다. 하지만 금융 시계열 데이터에는 분산이 일정하지 않으며 Non-stationarity 등 예측을 하는 것에 있어서 여러 가지 방해 요인이 존재한다. 또한 광범위한 데이터 변수는 기존에 사람이 직접 경험적으로 선택하는 것에 한계가 있기 때문에, 모델이 변수를 자동으로 추출할 수 있어야 한다. 본 논문에서는 여러 가지 금융 시계열 데이터의 문제를 고려하여 타임 스텝 정규화를 제안하며 자동 변수 추출을 위해 LSTM 형태의 오토 인코더 모델을 학습하였으며 LSTM 네트워크를 이용하여 시장 예측하는 모델을 제안한다. 해당 시스템은 실제 주식 거래나 시장 거래를 위하여 온라인 학습이 가능하며 긴 기간을 테스트 구간으로 실험한 결과 미래의 수익률을 예측하는 것에 있어서 우수한 성능을 보였다.

인터넷 검색트렌드와 기업의 주가 및 거래량과의 관계에 대한 연구 (A Study on the Relationship between Internet Search Trends and Company's Stock Price and Trading Volume)

  • 구평회;김민수
    • 한국전자거래학회지
    • /
    • 제20권2호
    • /
    • pp.1-14
    • /
    • 2015
  • 본 논문에서는 인터넷 검색 추세와 주식시장 사이에 어떤 관계가 있는지를 알아보고자 한다. 관심 기업의 정보를 얻기 위하여 투자자가 인터넷 검색엔진을 활용하고 이것이 실제 투자로 이어질 수 있다는 가정에서, 기업에 대한 검색량의 변화가 해당 기업의 주가 및 거래량 변동과 어떤 관계성이 있는지를 실제 데이터를 통해 분석하였다. 검색량의 변화를 기초로 한 검색트렌드 투자전략을 대기업 그룹과 중소기업 그룹에 적용하여, 두 그룹의 수익률 등락과 주식거래량에 대한 상관관계를 분석하였다. 7년(2007년~2013년)간의 데이터를 기초로 KOSPI와 KOSDAQ 모두에서 검색트렌드 투자전략이 시장의 평균 수익률 이상을 실현하고, 대기업보다는 중소기업에서 더 투자효과가 높다는 결과를 얻었다. 검색량과 주식거래량의 관계 또한 대기업보다는 중소기업이 더 영향을 받는다는 것을 알 수 있었다.

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.

확률행렬이론을 이용한 한국주식시장의 상관행렬 분석 (A Random Matrix Theory approach to correlation matrix in Korea Stock Market)

  • 김건우;이승철
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권4호
    • /
    • pp.727-733
    • /
    • 2011
  • 주식수익률간의 상관행렬 분석을 통해 유의미한 정보를 추출 활용하는 것은 주식시장을 이해하는데 매우 중요하다. 최근 확률행렬이론을 이용 상관행렬을 분석하는 연구들이 많이 진행되어 왔는데, 본 논문에서는 단일 요인 모형을 확률행렬이론에 적용 한국주식시장에서 주식수익률간의 상관행렬에 관한 유의미한 정보를 추출하였다. 특히 단일 요인을 도입 상관행렬을 분석한 결과가 실제 데이터를 잘 설명함을 관찰하였고, 단일 요인 모형의 유용성을 확인하였다.

대도시 지역 지하수 오염저감기술연구사업의 경제적 파급효과분석연구

  • 김성용;안은영;이재욱;손병국;김정찬
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.403-407
    • /
    • 2004
  • 한국지질자원연구원에서 1998년부터 2002년까지 기본사업으로 5년간 수행한 대도시 지역 지하수 오염저감기술연구사업의 경제적 파급효과로서 조건부가치측정법을 활용하여 연구사업성과의 비용, 편익, 순현재가치, 비용편익비, 내부수익률을 산정하였다. 분석과제의 주요성과 중 계량화가 가능한 직접 편익은 지하수 음용화 시설 구축에 따른 편익 및 지하수 데이터 가치 편익 두가지로 분석되었다. 이들 편익에 대한 경제적 파급효과를 2002년도 현재가치로 환산한 결과, 비용은 50.9억원, 편익은 676.9억원, 순현재가치는 626.0억원, 비용편익비는 13.3, 내부수익율은 152%로 나타났다.

  • PDF

머신러닝을 활용한 주식 투자 시스템 구현 (Development of Stock Investment System Using Machine Learning)

  • 남기백;장정식;오훈;김태형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 추계학술발표대회
    • /
    • pp.810-812
    • /
    • 2017
  • 최근 기계학습에 대한 관심이 높아지면서 금융 분야에서는 인공지능을 이용하여 투자 포트폴리오를 제안하는 로보어드바이저(robo-advisor)를 출시하고 있다. 이는 고객에게 저렴한 수수료를 제공하며 높은 접근성, 인건비의 절감 등의 장점으로 이를 도입하여 다양한 상품을 개발하고 있다. 본 연구에서는 머신러닝 알고리즘인 SVM(support vector machine)과 kNN(k-nearest neighbor)을 활용하여 매월 12개월 이전의 KOSPI 지수 데이터를 학습시킨 후 예측하는 투자 시스템을 구현하였다. 실험결과 SVM이 2.90413배의 성적으로 가장 우수했으며 수익률은 Precision(예측정확도)와 비례함을 보였다. 또한 수익곡선은 추세에 따라 유사한 형태를 보인 성과를 도출하였다.