• Title/Summary/Keyword: 데이터 교체

Search Result 351, Processing Time 0.03 seconds

The Maintenance Process Model using BPMN Method in Public Rental Housing (BPMN 방식을 이용한 공공임대주택 유지관리 업무 프로세스 모델)

  • Park, Kyung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.743-751
    • /
    • 2016
  • It is critical to effectively change the measures of prevention from the breakdown maintenance proceeding an apartment housing maintenance task scope. It is necessary that systematization be performed for a series of tasks, such as facility inspection, diagnosis and replacement. In addition, it is preceded by establishing a standardization for maintenance work scope. Therefore, this study examined the problems related to public rental housing maintenance work scope to manage it more systematically. In addition, the study suggests a work process section for facility repairs, long term replacement and general maintenance using one on one interviews with experts to classify the occupants, management office and head office. This study's standard work system is expected to provide fairness and transparency in addition to improving the productivity in public rental housing maintenance via an efficiency promotion plan. In addition, it is used as the basic reference for developing a system of public rental housing maintenance costs and diagnosis actions. Finally, it is necessary to create improvements that provide a more objective work system standardization throughout the analysis of the productivity data according to the work flow and the review of the occupants, management office and head office in the future applications of the pilot site.

Developing an On-Line Monitoring System for a Forest Hydrological Environment - Development of Hardware - (산림수문환경(山林水文環境) 모니터링을 위(爲)한 원거리(遠距離) 자동관측(自動觀測)시스템의 개발(開發) - 하드웨어를 중심(中心)으로 -)

  • Lee, Heon Ho;Suk, Soo Il
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.405-413
    • /
    • 2000
  • This study was conducted to develop an on-line monitoring system for a forest hydrological environment and its meteorological condition, such as temperature, wind direction and speed, rainfall and water level on V-notch, electrical conductivity(EC), potential of hydrogen(PH) by the motor drive sensor unit and measurement with a single-chip microprocessor as controller. These results are summarized as follows ; 1. The monitoring system consists of a signal process unit, motor drive sensor unit, radio modem unit and power supply. 2. The motor drive sensor unit protects the sensor from swift current or freezing and can constantly maintain fixed water level during measurements. 3. This monitoring system can transfer the data by radio modem. Additionally, this system can monitor hydrological conditions in real time. 4. The hardware was made of several modules with an independent CPU. They can be mounted, removed, repaired and added to. Their function can be changed and expanded. 5. These are the result of an accuracy test, the values of temperature, EC and pH measured within an error range of ${\pm}0.2^{\circ}C$, ${\pm}1{\mu}S$ and ${\pm}0.1pH$ respectively. 6. This monitoring system proved to be able to measure various factors for a forest hydrological environment in various experimental stations.

  • PDF

A review of Classical Archaeology (고전고고학(古典考古學) 재론(再論))

  • Lee, Min Seok
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.170-191
    • /
    • 2018
  • Until now, the Korean archeological community has only been able to introduce the findings of classical archaeology developed in the West, and it also suffers from a lack of concepts and academic achievements. The domestic archeological community also started to develop later than that of the West, when it began to analyze ancient history and relics through the classic works of history titled Samguk sagi (三國史記) and Samguk yusa (三國遺事). Furthermore, it is actively utilizing the Chinese classics, such as the Samgukji (三國志) and Huhanseo (後漢書), as well as certain Japanese classics such as Ilbonsegi (日本書紀). Due to the total lack of domestic classics, however, there are few details about the formation of ancient polities, national changes, and inter-country negotiations and exchanges, as well as numerous other unresolved issues. This study raises the need to revamp classical archaeology in order to solve these problems. The concept of classical means 'all records made in the past' in the shallow sense, while the meaning of the historiography means "historical records according to the taxonomy of the old book." Classical archaeology is a field in which the classics are analyzed and interpreted so as to study the culture of the past. This section has set up a wide range of classical categories, and has found that the classics can be used in a meaningful way in classical archaeology through the use of the Gongjagae (孔子家語). The use of the classics in classical archaeology could produce significant results if the relevant DB is managed by various institutions and organizations using proper techniques of analysis including big data analysis.

Clinical Microscopy: Performance, Maintenance and Laser Safety (임상에서의 현미경: 작동, 유지보수 및 레이저 안전)

  • Lee, Tae Bok
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.125-133
    • /
    • 2019
  • A microscope is the fundamental research and diagnostic apparatus for clinical investigation of signaling transduction, morphological changes and physiological tracking of cells and intact tissues from patients in the biomedical laboratory science. Proper use, care and maintenance of microscope with comprehensive understanding in mechanism are fully requested for reliable image data and accurate interpretation for diagnosis in the clinical laboratory. The standard operating procedure (SOP) for light microscopes includes performance procedure, brief information of all mechanical parts of microscopes with systematic troubleshooting mechanism depending on the laboratory capacity. Maintenance program encompasses cleaning objective, ocular lenses and inner optics; replacement and calibration of light source; XY sample stage management; point spread function (PSF) measurement for confocal laser scanning microscope (CLSM); quality control (QC) program in fluorescent microscopy; and systematic troubleshooting. Laser safety is one of the concern for medical technologists engaged in CLSM laboratory. Laser safety guideline based on the laser classification and risk level, and advisory lab wear for CLSM users are also expatiated in this overview. Since acquired image data presents a wide range of information at the moment of acquisition, well-maintained microscopes with proper microscopic maintenance program are impulsive for its interpretation and diagnosis in the clinical laboratory.

Development of Customizable Fluorescence Detection System using 3D Printer (3D 프린터를 활용한 맞춤형 휴대용 형광측정 장치 개발)

  • Cho, Kyoung-rae;Seo, Jeong-hyeok;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.278-280
    • /
    • 2019
  • Flow cytometer is one of the instrument that can measure various optical properties of a single cell or microparticle. These parameters including size, granularity, and fluorescence intensity are determined by the physical and optical interaction of the cells with excitation light source. However, users have some difficulties such as high cost, size of instrument, and limited fluorescence selectivity. In addition, abundant data is also unintentionally acquired even though user wants to have a single optical parameter. For these reasons, the use of flow cytometer is more challenging for researchers to apply their study. Therefore, the proposed study aims to develop a low-cost portable fluorescence acquisition system using a commercially available light-emitting diode and photodiode. It is designed by a 3D printer, and fluorescence selectivities are increased by changing of the light source / optical filter / detection sensor. Various number sets of fluorescently labeled cells were measured, and its feasibility was evaluated through the proposed system. As a result, acquried fluorescence intensities were proportional to the concentration of the cells and showed high linearity.

  • PDF

On the Occurrence of Defects by Vehicle Type According to the Fire-fighting Vehicle Detailed Inspection (소방차량 정밀점검 분석에 따른 차종별 결함 발생에 관한 연구)

  • Lee, Jang Won;Han, Yong-Taek
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • Purpose: This study is based on the detailed inspection data for the last 6 years of fire-fighting high ladder vehicles, fire-fighting inflected ladder vehicles, fire-fighting chemical vehicles and fire-fighting pump vehicles used in front-line fire departments. The purpose is to contribute to the technological development of fire-fighting vehicles by grasping the implementation status of each city and province, the rate of defects, and the occurrence of defects by year. Method: The implementation status by city and province, defect incidence rate, and defect occurrences by year were analyzed. Result: From 2012 to 2017, when the average of 230 or more overhaul vehicles was requested, the results of each city/province show slight fluctuations, but the number of defects gradually decreased due to the old fire-fighting vehicle replacement project and the response of fire vehicle manufacturers. Conclusion: In the case of fire-fighting ladders, the incidence rate of defects was found to be in the order of elevator device, electric device, ladder device, and pneumatic supply device. And in the case of the fire fighting ladder, it was confirmed that the incidence of defects appeared in the order of the refractive ladder, hydraulic cylinder, hydraulic oil, and pneumatic supply device. In the case of fire-fighting chemical vehicles, it was confirmed that defects occurred in the powder fire extinguishing device, fire pump, vacuum pump, and pneumatic supply device.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.147-153
    • /
    • 2023
  • As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.

Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification (전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법)

  • Byambajav, Batkhuu;Alikhanov, Jumabek;Fang, Yang;Ko, Seunghyun;Jo, Geun Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet) is one class of the powerful Deep Neural Network that can analyze and learn hierarchies of visual features. Originally, first neural network (Neocognitron) was introduced in the 80s. At that time, the neural network was not broadly used in both industry and academic field by cause of large-scale dataset shortage and low computational power. However, after a few decades later in 2012, Krizhevsky made a breakthrough on ILSVRC-12 visual recognition competition using Convolutional Neural Network. That breakthrough revived people interest in the neural network. The success of Convolutional Neural Network is achieved with two main factors. First of them is the emergence of advanced hardware (GPUs) for sufficient parallel computation. Second is the availability of large-scale datasets such as ImageNet (ILSVRC) dataset for training. Unfortunately, many new domains are bottlenecked by these factors. For most domains, it is difficult and requires lots of effort to gather large-scale dataset to train a ConvNet. Moreover, even if we have a large-scale dataset, training ConvNet from scratch is required expensive resource and time-consuming. These two obstacles can be solved by using transfer learning. Transfer learning is a method for transferring the knowledge from a source domain to new domain. There are two major Transfer learning cases. First one is ConvNet as fixed feature extractor, and the second one is Fine-tune the ConvNet on a new dataset. In the first case, using pre-trained ConvNet (such as on ImageNet) to compute feed-forward activations of the image into the ConvNet and extract activation features from specific layers. In the second case, replacing and retraining the ConvNet classifier on the new dataset, then fine-tune the weights of the pre-trained network with the backpropagation. In this paper, we focus on using multiple ConvNet layers as a fixed feature extractor only. However, applying features with high dimensional complexity that is directly extracted from multiple ConvNet layers is still a challenging problem. We observe that features extracted from multiple ConvNet layers address the different characteristics of the image which means better representation could be obtained by finding the optimal combination of multiple ConvNet layers. Based on that observation, we propose to employ multiple ConvNet layer representations for transfer learning instead of a single ConvNet layer representation. Overall, our primary pipeline has three steps. Firstly, images from target task are given as input to ConvNet, then that image will be feed-forwarded into pre-trained AlexNet, and the activation features from three fully connected convolutional layers are extracted. Secondly, activation features of three ConvNet layers are concatenated to obtain multiple ConvNet layers representation because it will gain more information about an image. When three fully connected layer features concatenated, the occurring image representation would have 9192 (4096+4096+1000) dimension features. However, features extracted from multiple ConvNet layers are redundant and noisy since they are extracted from the same ConvNet. Thus, a third step, we will use Principal Component Analysis (PCA) to select salient features before the training phase. When salient features are obtained, the classifier can classify image more accurately, and the performance of transfer learning can be improved. To evaluate proposed method, experiments are conducted in three standard datasets (Caltech-256, VOC07, and SUN397) to compare multiple ConvNet layer representations against single ConvNet layer representation by using PCA for feature selection and dimension reduction. Our experiments demonstrated the importance of feature selection for multiple ConvNet layer representation. Moreover, our proposed approach achieved 75.6% accuracy compared to 73.9% accuracy achieved by FC7 layer on the Caltech-256 dataset, 73.1% accuracy compared to 69.2% accuracy achieved by FC8 layer on the VOC07 dataset, 52.2% accuracy compared to 48.7% accuracy achieved by FC7 layer on the SUN397 dataset. We also showed that our proposed approach achieved superior performance, 2.8%, 2.1% and 3.1% accuracy improvement on Caltech-256, VOC07, and SUN397 dataset respectively compare to existing work.

Assessment of Environmental Impacts and $CO_2$ Emissions from Soil Remediation Technologies using Life Cycle Assessment - Case Studies on SVE and Biopile Systems - (전과정평가(LCA)에 의한 토양오염 정화공정의 환경영향분석 및 $CO_2$ 배출량 산정 - SVE 및 Biopile 시스템 중심으로 -)

  • Jeong, Seung-Woo;Suh, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.267-274
    • /
    • 2011
  • The environmental impacts of 95% remediation of a total petroleum hydrocarbon-contaminated soil were evaluated using life cycle assessment (LCA). LCA of two remediation systems, soil vapor extraction (SVE) and biopile, were conducted by using imput materials and energy listed in a remedial system standardization report. Life cycle impact assessment (LCIA) results showed that the environmental impacts of SVE were all higher than those of biopile. Prominent four environmental impacts, human toxicity via soil, aquatic ecotoxicity, human toxicity via surface water and human toxicity via air, were apparently found from the LCIA results of the both remedial systems. Human toxicity via soil was the prominent impact of SVE, while aquatic ecotoxicity was the prominent impact of biopile. This study also showed that the operation stage and the activated carbon replacement stage contributed 60% and 36% of the environmental impacts of SVE system, respectively. The major input affecting the environmental impact of SVE was electricity. The operation stage of biopile resulted in the highest contribution to the entire environmental impact. The key input affecting the environmental impact of biopile was also electricity. This study suggested that electricity reduction strategies would be tried in the contaminated-soil remediation sites for archieving less environmental impacts. Remediation of contaminated soil normally takes long time and thus requires a great deal of material and energy. More extensive life cycle researches on remedial systems are required to meet recent national challenges toward carbon dioxide reduction and green growth. Furthermore, systematic information on electricity use of remedial systems should be collected for the reliable assessment of environmental impacts and carbon dioxide emissions during soil remediation.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.