DOI QR코드

DOI QR Code

Clinical Microscopy: Performance, Maintenance and Laser Safety

임상에서의 현미경: 작동, 유지보수 및 레이저 안전

  • Lee, Tae Bok (Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital)
  • 이태복 (서울대학교병원 의학연구혁신센터 공초점현미경실)
  • Received : 2019.04.11
  • Accepted : 2019.05.02
  • Published : 2019.06.30

Abstract

A microscope is the fundamental research and diagnostic apparatus for clinical investigation of signaling transduction, morphological changes and physiological tracking of cells and intact tissues from patients in the biomedical laboratory science. Proper use, care and maintenance of microscope with comprehensive understanding in mechanism are fully requested for reliable image data and accurate interpretation for diagnosis in the clinical laboratory. The standard operating procedure (SOP) for light microscopes includes performance procedure, brief information of all mechanical parts of microscopes with systematic troubleshooting mechanism depending on the laboratory capacity. Maintenance program encompasses cleaning objective, ocular lenses and inner optics; replacement and calibration of light source; XY sample stage management; point spread function (PSF) measurement for confocal laser scanning microscope (CLSM); quality control (QC) program in fluorescent microscopy; and systematic troubleshooting. Laser safety is one of the concern for medical technologists engaged in CLSM laboratory. Laser safety guideline based on the laser classification and risk level, and advisory lab wear for CLSM users are also expatiated in this overview. Since acquired image data presents a wide range of information at the moment of acquisition, well-maintained microscopes with proper microscopic maintenance program are impulsive for its interpretation and diagnosis in the clinical laboratory.

임상병리 검사분야에 있어서 환자로부터 유래된 조직이나 세포의 형태학적 변화, 세포 생리, 세포 내 분자의 추적 및 신호전달 체계 등의 임상검사 및 관련 연구를 위한 빼놓을 수 없는 주요한 진단과 연구장비로서 현미경이 가지는 의미는 크다고 할 수 있다. 현미경에 대한 포괄적인 지식과 이해를 바탕으로 현미경의 올바른 사용, 관리와 유지보수는 신뢰도 높은 이미지 획득과 그에 따른 정확한 데이터 분석을 통한 질병의 진단을 위해서 반드시 요구되는 부분이라고 할 수 있다. 광학현미경의 표준 운영 절차(standard operating procedure, SOP)는 현미경의 작동 절차와 함께 검사실 규모에 따른 현장 사용자의 체계적인 현미경 장해 해결 방안과 기계적 원리에 대한 핵심 정보가 함께 수록되어야 한다. 현미경 유지관리 업무에는 대물, 접안렌즈와 현미경 내부 광학필터의 청소, 광원의 교체와 교정, XY재물대 유지보수, 공초점 레이저 주사 현미경(confocal laser scanning microscope)에서의 점확산함수(point spread function, PSF) 측정, 형광현미경에서의 검사 품질관리(quality control, QC)와 체계적인 현미경 장해 해결방안 등이 포함되어야 한다. 본 종설에서는 국제적 기준에 따른 레이저의 위험도에 따라 일부 현미경에 장착된 레이저 광원에 대한 안전지침과 보호장구에 대한 내용을 함께 소개하였다. 현미경을 통해 획득된 이미지는 촬영된 시점의 검체에 대한 모든 정보를 제공한다고 할 수 있으며, 적절한 유지보수 프로그램과 그에 따라 적합하게 관리된 현미경만이 이미지 데이터를 통한 정보의 획득, 올바른 해석과 정확한 진단에 반드시 필요한 선제 조건들이라고 하겠다.

Keywords

References

  1. Wollman AJM, Nudd R, Hedlund EG, Leake MC. From animaculum to single molecules: 300 years of the light microscope. Open Biol. 2015;5:150019. http://doi.org/10.1098/rsob.150019.
  2. Araki T. The history of optical microscope. Mech Eng Rev. 2017;4:16-00242. https://doi.org/10.1299/mer.16-00242.
  3. Herzberger M. History of image of microscope. Optik. 1973;39:93-98.
  4. Lane N. The unseen world: reflections on Leeuwenhoek (1677) 'concerning little animals'. Philos T R Soc B. 2015;370: 20140344. http://dx.doi.org/10.1098/rstb.2014.0344.
  5. Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules. 2012;17:4047-4132. https://doi.org/10.3390/molecules17044047
  6. Thorn K. A quick guide to light microscopy in cell biology. Mol Biol Cell. 2016;27:219-222. https://doi.org/10.1091/mbc.e15-02-0088
  7. De Luca GMR, Desclos E, Breedijk RMP, Dolz-Edo L, Smits GJ, Nahidiazar L, et al. Configurations of the re-scan confocal microscope (RCM) for biomedical applications. Journal of Microscopy. 2017;266:166-177. https://doi.org/10.1111/jmi.12526
  8. Bainier C, Vannier C, Courjon D, Rivoal JC, Ducourtieux S, De Wilde Y, et al. Comparison of test images obtained from various configurations of scanning near-field optical microscopes. Appl Optics. 2003;42:691-700. https://doi.org/10.1364/AO.42.000691
  9. Weisenburger S, Sandoghdar V. Light microscopy: an ongoing contemporary revolution. Contemp Phys. 2015;56:123-143. https://doi.org/10.1080/00107514.2015.1026557
  10. Suzuki T, Matsuzaki T, Hagiwara H, Aoki T, Takata K. Recent advances in fluorescent labeling techniques for fluorescence microscopy. Acta Histochem Cytoc. 2007;40:131-137. https://doi.org/10.1267/ahc.07023
  11. Riezzo I, Cantatore S, De Carlo D, Fiore C, Neri M, Turillazzi E, et al. Confocal laser scanning microscope, Raman microscopy and western blotting to evaluate inflammatory response after myocardial infarction. Curr Vasc Pharmacol. 2015;13:78-90. https://doi.org/10.2174/15701611113119990004
  12. Guggenheim EJ, Khan A, Pike J, Chang L, Lynch I, Rappoport JZ. Comparison of confocal and super-resolution reflectance imaging of metal oxide nanoparticles. PLoS ONE. 2016;11:E0159980. https://doi.org/10.1371/journal.pone.0159980.
  13. Knight AE, Gomez K, Cutler DF. Super-resolution microscopy in the diagnosis of platelet granule disorders. Expert Rev Hematol. 2017;10:375-381. https://doi.org/10.1080/17474086.2017.1315302
  14. Yin ZZ, Kanade T, Chen M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med Image Anal. 2012;16:1047-1062. https://doi.org/10.1016/j.media.2011.12.006
  15. Miccio L, Finizio A, Puglisi R, Balduzzi D, Galli A, Ferraro P. Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization. Biomed Opt Express. 2011;2:331-344. https://doi.org/10.1364/BOE.2.000331
  16. Li FK, Feng H, Thaler AN, Parnell SR, Hamilton WA, Crow L, et al. High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms. Sci Rep. 2017;7:865. https://doi.org/10.1038/s41598-017-00740-5.
  17. Cole RW, Thibault M, Bayles CJ, Eason B, Girard AM, Jinadasa T, et al. International test results for objective lens quality, resolution, spectral accuracy and spectral separation for confocal laser scanning microscopes. Microsc Microanal. 2013;19:1653-1668. https://doi.org/10.1017/S1431927613013470
  18. Stack RF, Bayles CJ, Girard AM, Martin K, Opansky C, Schulz K, et al. Quality assurance testing for modern optical imaging systems. Microsc Microanal. 2011;17:598-606.
  19. Deagle RC, Wee TL, Brown CM. Reproducibility in light microscopy: maintenance, standards and SOPs. Int J Biochem Cell B. 2017;89:120-124. https://doi.org/10.1016/j.biocel.2017.06.008
  20. Fritz B, Jenner A, Wahl S, Lappe C, Zehender A, Horn C, et al. A view to a kill? - ambient bacterial load of frames and lenses of spectacles and evaluation of different cleaning methods. PLoS ONE. 2018;13:E0207238. https://doi.org/10.1371/journal.pone.0207238.
  21. Centonze FV. Proper care and cleaning of the microscope. J Vis Exp. 2008;18:E842. https://doi:10.3791/842.
  22. Ferrando-May E, Hartmann H, Reymann J, Ansari N, Utz N, Fried HU, et al. Advanced light microscopy core facilities: balancing service, science and career. Microsc Res Techniq. 2016;79:463-479. https://doi.org/10.1002/jemt.22648
  23. Zucker RM, Price O. Evaluation of confocal microscopy system performance. Cytometry. 2001;44:273-294. https://doi.org/10.1002/1097-0320(20010801)44:4<273::AID-CYTO1120>3.0.CO;2-N
  24. Zucker RM, Price OT. Practical confocal microscopy and the evaluation of system performance. Methods. 1999;18:447-458. https://doi.org/10.1006/meth.1999.0812
  25. Petrak LJ, Waters JC. A Practical guide to microscope care and maintenance. Method Cell Biol. 2014;123:55-76. https://doi.org/10.1016/B978-0-12-420138-5.00004-5
  26. Abramowitz M, Spring KR, Keller HE, Davidson MW. Basic principles of microscope objectives. BioTechniques. 2002;33:772-781. https://doi.org/10.2144/02334bi01
  27. Pramanik T, Ghosh A, Roychowdhury P. Easy lens cleaning solution for laboratory microscopes. Med J Malaysia. 2005;60:116.
  28. Egorova OV, Shtein GI. A comparison of fluorescence-microscope illuminator systems based on LEDs and HBO mercury lamps. J Opt Technol. 2011;78:81-82. https://doi.org/10.1364/JOT.78.000081
  29. Heimer GV, Taylor CED. Improved immunofluorescence obtained with a tungsten halogen lamp in a modified inverted microscope. J Clin Pathol. 1972;25:88-93. https://doi.org/10.1136/jcp.25.1.88
  30. Ganandran GSB, Mahlia TMI, Ong HC, Rismanchi B, Chong WT. Cost-benefit analysis and emission reduction of energy efficient lighting at the Universiti Tenaga Nasional. Sci World J. 2014;2017:745894. http://dx.doi.org/10.1155/2014/745894.
  31. Cordero I. How to handle and care for bulbs in ophthalmic. Community Eye Health. 2013;26:36-37.
  32. Wilson T. Resolution and optical sectioning in the confocal microscope. J Microsc. 2011; 244:113-121. https://doi.org/10.1111/j.1365-2818.2011.03549.x
  33. Jonkman J, Brown CM. Any way you slice it - a comparison of confocal microscopy techniques. J Biomol Tech. 2015;26:54-65. https://doi.org/10.7171/jbt.15-2602-003
  34. Mendez-Vilas A, Edithor. Microscopy: advances in scientific research and education. Extremadura: Formatex Research Center; 2014. p713-724.
  35. Arbabi A, Horie Y, Ball AJ, Bagheri M, Faraon A. Subwavelengththick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat Commun. 2015;6:7069. http://doi.org/10.1038/ncomms8069.
  36. Murray JM, Appleton PL, Swedlow JR, Waters JC. Evaluating performance in three-dimensional fluorescence microscopy. J Microsc. 2007;228:390-405. https://doi.org/10.1111/j.1365-2818.2007.01861.x
  37. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671-675. https://doi.org/10.1038/nmeth.2089
  38. Lavanya A, Sowmya SV, Rao RS, Augustine D, Haragannavar VC, Nambiar S, et al. Troubleshooters in light microscopy. World J Dent. 2017;8:511-518. https://doi.org/10.5005/jp-journals-10015-1495
  39. Aly EM, Mohamed ES. Effect of infrared radiation on the lens. Indian J Ophthalmol. 2011;59:97-101.
  40. Kolozsvari L, Nogradi A, Hopp B, Bor Z. UV absorbance of the human cornea in the 240-to 400-nm range. Invest Ophth Vis Sci. 2002;43:2165-2168.
  41. Salmon ED, Canman JC. Proper alignment and adjustment of the light microscope. Curr Protoc Cell Biol. 2001;Chapter 4: 4.1.1-4.1.26. https://doi.org/10.1002/0471143030.cb04011s00.
  42. Hng KI, Dormann D. Confocalcheck - a software tool for the automated monitoring of confocal microscope performance. PLoS ONE. 2013;8:E79879. https://doi.org/10.1371/journal.pone. 0079879.
  43. Anderson KI, Sanderson J, et al. Imaging cellular and molecular biological functions. Heidelberg : Springer; 2007. p93-113.