• Title/Summary/Keyword: 대칭단면 유동

Search Result 10, Processing Time 0.02 seconds

Comparison of Various Turbulence Models for the Calculation of Plane of Symmetry Flows (대칭단면에서의 난류모형 비교)

  • 손창현;최도형;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1052-1060
    • /
    • 1989
  • Using a vortex stretching invariant term, the two-layer k-.epsilon. model has been modified to account for the extra staining of turbulence due to the mean-flow convergence and divergence. The calculations of turbulent boundary layers in a plane of symmetry are compared for experimental cases which are an axisymmetric body at an incidence of 15.deg.. The comparisons between the calculations and experimental data show that additional modifications to the dissipation rate equation have brought the significant improvement to the prediction of plane of symmetry boundary layers in the strong mean-flow convergence and divergence.

Improved Turbulence Model on the 3 Dimensional Plane of Symmetry Flow (3차원 대칭단면 유동장에서의 개선된 난류모델)

  • Sohn C. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1997
  • Two versions of anisotropic k-ε turbulence model are incorporated in the modified k-ε model of Sohn et al. to avoid the need for the experimental normal stress value in the model and applied to convergent and divergent flows with strong and adverse pressure gradients in the plane of symmetry of a body of revolution. The models are the nonlinear k-ε model of Speziale and the anisotropic model of Nisizima & Yoshizawa. All of the models yield satisfactory results for relatively complex flow on a plane-of-symmetry boundary layer. The results of the models are compared with those results of experimental normal stress value.

  • PDF

An experimental study on the structure of the jet flame in cross flow (균일 유동장에 수직으로 분사된 제트화염의 구조에 대한 실험적 연구)

  • 유영돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.84-89
    • /
    • 1994
  • 주유동에 수직으로 분사된 제트 화염의 구조는 이해하기 위하여 화염 길이와 온도를 측정하고 reactive mie scattering 방법을 이용하여 단면 가시화를 실시하였다. 주유동 속도와 제트 분사 속도의 증가에 따라 화염 길이도 함께 증가함을 알 수 있고, 단면 가시화 결과 화염 내부에 존재하는 inner vortical structure는 일반적인 동축제트 화염과 같은 대칭 구조를 갖지 앉고 유동 조건에 따라 inner vortical motion 의 생성 위치가 변화함을 알 수 있다 이는 본 유동장의 특성 중의 하나인 bound vortex와 제트와 주유동이 접하는 상류 면에서 발생하는 rolling-up 의 강도에 좌우됨을 알 수 있다.

  • PDF

Numerical Analysis of Flow Characteristics in the Impeller Channel of a Double Suction Pump (양흡입 펌프 회전차 채널 내부 유동 특성 고찰)

  • 김세진;김윤제
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2000
  • 양흡입 펌프 회전차 내부 유동특성을 수치적으로 고찰하였다. 수치계산은 설계점과 2개의 탈설계점에서 이루어졌으며, Patankar에 의해 제시된 SIMPLE 알고리즘을 이용하였다. 설계점에서는 양 회전차 채널 내부에서 대칭 형상을 갖는 이차유동 특성을 발견하였지만, 탈설계점에서는 비대칭 유동특성을 발견하였다. 수치해석 결과로는 유량감소에 따라 양흡입 펌프 회전차 채널내부의 이차유동 특성이 달라진다는 사실을 고찰하였다. 또한 양흡입 펌프 회전차 단면에는 모퉁이 와류가 존재함을 알 수 있었다.

  • PDF

Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks (열원의 대칭 배열에 따른 압출형 히트싱크의 방열성능 연구)

  • Ku, Min Ye;Shin, Hon Chung;Lee, Gyo Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

경사유로내에서 유동비등에 관한 실험적 연구

  • 이태호;김문오;박군철
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.487-494
    • /
    • 1997
  • 비등이 발생하는 경사유로에서 이상유동 구조 파악을 위해 국부적 이상유동 변수의 측정이 이루어졌다. 국부 기포율, 국부 기포빈도, 국부기포속도 그리고 국부 기포크기와 같은 기상 관련 이상유동변수는 이중 전기전도도 탐침으로, 액상속도 분포는 Pilot tuba로 측정하였다. 유로의 경사도가 이상유동 구조에 미치는 영향을 파악하기 위해 실험은 수직, 수직으로부터 30도 경사도 및 60도 경사도에서 유량과 열유속을 변화시켜가며 수행하였으며 유동변수의 측정은 경사진 경우에 측면 방향으로의 대칭성을 고려하여 유로 반 단면내 총 91개 지점에서, 수직인 경우에는 13개 지점에서 이루어졌다. 유동조건은 1.4m/s 이하의 평균 액상 겉보기 속도에 제한되었고 유로내 압력은 대기압이며 유동양식은 미포화 비등에 국한되었다. 측정된 이상유동 변수의 분포를 이용하여 경사유로에 적용할 수 있는 distribution parameter와 drift velocity 같은 dirft flux parameter에 대한 상관식이 개발되었다.

  • PDF

Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section (NACA0015익형을 가지는 로터 깃 끝와류의 후류유동구조)

  • Sohn, Yong-Joon;Kim, Jeong-Hyun;Han, Yong-Oun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Evolution of tip vortex generated by a model rotor blade which has a symmetric blade section has been investigated by use of the laser doppler anemometry. Swirl and axial velocity components of tip vortex were measured by the phase averaging technique within one revolution of a rotor blade. It was found that tip vortex becomes matured until 27 degrees and diffuses afterwards with diffusing rate becoming slower compared to the case of the asymmetric blade section, but the tip loss was expected to become more substantial. Swirl velocity components were well fit to n=2 model of Vatistas within measured wake ages, showing the self-similarity exists for the swirl velocity components. The axial components were followed with Gaussian profiles, but had much higher peak values than those of the symmetric blade section.

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

Numerical Analysis of the Flow in a Compliant Tube Considering Fluid-wall Interaction (벽-유체의 상호작용을 고려한 유연관 내부 유동의 수치적 연구)

  • 심은보
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.391-401
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and the results are compared to the existing experimental data. Steady two-dimensional flow in a collapsible channel with initial tension is also simulated and the results are compared with numerical solutions from the literature. Computational results show that as cross-sectional area decreases with the reduction in downstream pressure, flow rate increases and reaches the maximum when the speed index (mean velocity divided by wave speed) is near the unity at the point of minimum cross-section area, indicating the flow limitation or choking (flow speed equals wave speed) in one-dimensional studies. for further reductions in downstream pressure, flow rate decreases. The flow limitation or choking consist of the main reasons of waterfall effect which occurs in the airways, capillaries of lung, and other veins. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is 2, the area throat is located near the downstream end. As this ratio is increased to 3, the constriction moves to the upstream end of the tube.

  • PDF

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.