• Title/Summary/Keyword: 대역통과여파기

Search Result 27, Processing Time 0.023 seconds

Improvement of Band Pass Filter Using PBG and Aperture (Aperture와 PBG를 적용한 대역통과 여파기 성능개선에 관한 연구)

  • 이승재;서철헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10A
    • /
    • pp.847-852
    • /
    • 2003
  • Apertures and PBG(Photonic Band Gap) has been employed on the ground plane in the coupled line filter simultaneously. In order to observe the maximum bandwidth, we used the line gap 0.2mm which is can be made in our lab. Band-pass filter type is four-stage coupled strip line filter. Teflon has been used for the substrate ($\varepsilon$$\sub$r/=3.2). The center frequency and the bandwidth are 2.18GHz and 230MHz, respectively. The bandwidth is broaden from 230MHz to 310MHz (80Mhz, about 34.7%) by aperture effect and harmonic frequencies are suppressed to 20-30dB by PBG effect. So the harmonic frequencies have been suppressed by the PBG effect and the bandwidth are broaden by aperture effect.

Design and Implementation of the Combline Bandpass Filter for the Satellite Transponder using Least-squares Curve-fitting Method (Least-squares Curve-fitting 방법을 이용한 위성중계기용 Combline 대역통과여파기의 설계 및 제작)

  • 정근욱;이재현;박광량;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1485-1492
    • /
    • 1994
  • In this paper, we design and implement the Combline Bandpass Filters for the satellite transponder by using the least-squares curve-fitting method. The Combline Bandpass Filters are located front of the mixer and behind of it, which is the component of down converter. Comparing with the filters which have $\lambda$/4 resonance length. Combline Filter has wide range of stop-band by using $\lambda$/8. So, it is useful to the satellite transponder owing to its low mass and small size. The filters described are realized as coupled rectangular coaxial transmission lines. The choice of this type is due to the ease of machining and wide variations in coupling coefficients rather than the use of the round rod resonators. We determine 800 MHz bandwidths for the combline bandpass filters. By using Chebyshev filter function, we design and implement 4-pole combline filters.

  • PDF

소프트웨어 라디오 시스템을 위한 계산이 간단한 디지털 채널라이저의 설계

  • 오혁준;심우현;이용훈
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.3
    • /
    • pp.2-17
    • /
    • 1999
  • Interpolated second order polynomials(ISOP's) are proposed to design efficient cascaded integrator-comb(CIC)-based decimation filters for a programmable downconverter. It is shown that some simple ISOP's can effectively reduce the passband droop caused by CIC filtering with little degradation in aliasing attenuation. In addition, ISOP's are shown to be useful for simplifying halfband filters that usually follow CIC filtering. As a result, a modified half band filter(MHBF) is introduced which is simpler than conventional halfband filters. The proposed decimation filter for a programmable downconverter is a cascade of a CIC filter, an ISOP, MHBF's and a programmable finite impulse response(FIR) filter. A procedure for designing the decimation filter is developed. In particular, an optimization technique that simultaneously designs the decimation filter is developed. In particular, an optimization technique that simultaneously designs the ISOP and programmable FIR filters is presented. Design examples demonstrate that the proposed method leads to more efficient programmable downconverters than existing ones.

  • PDF

A Basic Study on Eddy Current Testing of End-Cap Welds (봉단 용접부 와전류탐상의 기초적인 연구)

  • Suh, D.M.;Sim, K.S.;Kwon, W.J.;Kim, J.H.;Park, C.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 1998
  • In nuclear fuel manufacturing process, end-closure welding has long been recognized as requiring very high integrity. In this basic study, ECT(eddy current testing) method for end-closure welding has been developed to detect end cap weld discontinuities for nuclear fuel safety. In order to improve the inspection reliability, the maximum scanning speed and the maximum frequency is investigated for end-closure welding inspection. The bandpass filter(0-250Hz) is used for removing noise effects. This study shows that ECT method is effective and sensitive for the detection of small defect(0.35mm diameter).

  • PDF

Synthesis of Active Filters Using Operational Amplitiers of Finite GB Product (GB 적을 고려한 능동려파회로구성에 관한 연구)

  • Lee, Tae-Won;Jo, Yong-Hyeon;Ryu, Je-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.4
    • /
    • pp.45-52
    • /
    • 1980
  • In order to eliminate the phase errors caused by the finite GB product of operational amplifiers, novel integnator circuits are proposed. These circuits are characterized by their positive phase error angles and integrator selectivity. The positive sign of the Q and of the circuits compensates the negative selectivity and phase error angles, inherent in the integrated operational amplifiers. Miller inverting intergrator of a biquad circuit realized by Thomas is replaced by the proposed circuit and the band-pass frequency response of the modified biquad network is experimentally analyzed. A considerable improvement is recognized to such extent that the center frequency of the band-pass filter is allowed to be shifted up to 20KHz, which has been infeasible with conventional biquad networks.

  • PDF

Design and Implementation of BPF Using a Symmetric Coupled Line (대칭형 결합선로를 이용한 BPF의 설계 및 구현)

  • Kang, Sang-Gee;Choi, Heung-Taek;Lee, Jae-Myung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1255-1260
    • /
    • 2009
  • Microstrip interdigital filter is designed with the width and length of a resonator, the gap distance between resonators and the location of a tap. When designing filters, it is a benefit to design with few design parameters comparing to many design parameters. In this paper we design and implement two microstrip interdigital filters operating in the UWB(Ultra Wide-Band) frequency band, one using a fixed width of a resonator and the other using a different width of resonators. The test results of the implemented filters show that the low-band high filter with a fixed width has the insertion loss of 1.49dB, -10dB band width of 720MHz, -35.7dBattenuation at 4.8GHzand below -13dB of S11. The filter with a different width of resonators has the insertion loss of 1.6dB, -10dBbandwidth of 1.63GHz and below-8dBof S11.

Design and Implementation of UWB BPFs (UWB BPF의 설계 및 구현)

  • Kang, Sang-Gee;Lee, Jae-Myung;Hong, Sung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.815-820
    • /
    • 2008
  • Recently the frequency assignment and the technical specifications of UWB systems for communications are completed. Therefore many UWB systems have been developed. In our country $3.1{\sim}4.8GHz$ and $7.2{\sim}10.2GHz$ are assigned for UWB systems for communications. When we consider RF technologies and the easy implementation of UWB systems, UWB systems used in the low band are more developed than high band systems. In this paper we design and implement a BPF for low band UWB systems by means of considering the easy implementation of UWB systems. The designed and implemented BPFs are low band filter and low band channel filters. The measured results of the low band filter show that the filter has 21.85dB and 17.91dB attenuation at 3.1GHz and 4.8GHz, 1.53GHz of -10dB bandwidth and 2dB of insertion loss. Low band can be divided into 3 channels with 500MHz of the channel bandwidth. The channel filter for channel number 1 has the characteristics of 24.85dB attenuation at 3.1GHz, 0.61GHz of -10dB bandwidth and 1.87dB of insertion loss. The filter for channel 3 in low band has 19.2dB of attenuation at 4.8GHz, 0.49GHz of -10dB bandwidth and 2.49dB of insertion loss.