• Title/Summary/Keyword: 대식세포 활성화

Search Result 276, Processing Time 0.031 seconds

Effect of the Crude Polysaccharide of Pleurotus eryngii on the Activation of Immune Cells (큰느타리버섯(Pleurotus eryngii) 조다당체의 면역세포 활성화 효과)

  • 강혜인;김재용;문광덕;서권일;조영숙;이상대;이성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1092-1097
    • /
    • 2004
  • The objective of the current study was to determine the effects of the crude polysaccharide isolated from fruit body of Pleurotus eryngii on mouse splenocytes, B cells, and macrophages in vitro. The crude polysaccharides directly induced the proliferation of spleen cells in a dose-dependent manner and increased IL-6 and IFN-${\gamma}$ synthesis. The crude polysaccharides also increased the proliferation of B cells in a dose-dependent manner. The production of immunoglobulin Gl, G2a and IgG3 in the presence of the crude polysaccharides was increased progressively in the culture supernatant. When the crude polysaccharide were used in macrophage cell line (RA W264.7) stimulation, there were marked induction of NO synthesis in a dose-dependent manner and IL-6, TNF- r and GM-CSF synthesis. These results suggest that the crude polysaccharide isolated from fruit body of Pleurotus eryngii seem to act as a potent immunomodulator causing augmentation of immune cell activity, and thus could be used as a biological response modifier having possible therapeutic effects against immunological disorders, without any side effects.

Immunostimulatory activity and intracellular signaling pathways of a rhamnogalcaturonan II polysaccharide isolated from ginseng berry (인삼열매로부터 분리한 Rhamnogalacturonan II 다당의 면역활성과 세포 내 신호전달 기작 규명)

  • Cha, Ha Young;Son, Seung-U;Shin, Kwang-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.722-730
    • /
    • 2021
  • In this study, we aimed to elucidate the intracellular signaling pathways for macrophage activation by the polysaccharide GBW-II purified from ginseng berry. GBW-II consists of 14 different sugars, including rarely observed sugars such as 2-O-methyl-xylose, apiose, aceric acid, 2-keto-3-deoxy-D-manno-2-octulosonic acid, and 2-keto-3-deoxy-D-lyxo-2-heptulosaric acid, which are typical RG-II component sugars. GBW-II enhanced the production of IL-6 and TNF-α in RAW 264.7 cells. In experiments evaluating specific inhibitor activity, it was found that the production of IL-6 was suppressed by inhibitors of SB, PD, and BAY, and the production of TNF-α was suppressed by PD and BAY. The experiments with neutralizing antibodies showed that TLR4 was involved in the stimulation of IL-6 production by GBW-II in RAW 264.7 cells, whereas TNF-α production was regulated through SR and TLR2. These results suggest that GBW-II activates the MAPK and NF-κB pathways via several macrophage receptors, including SR, TLR2, and TLR4, and subsequently induces the secretion of IL-6 and TNF-α.

Macrophage Activation by Polysaccharides from Korean's Commercial and Traditional Soy Sauces (국내 상업용 간장과 재래식 간장 유래 다당에 의한 대식세포 활성화)

  • Lee, Moon-Su;Shin, Kwang-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.4
    • /
    • pp.797-805
    • /
    • 2013
  • The varying characteristics between Korean's commercial and traditional soy sauces may be initiated by raw materials and fermentation techniques such as the koji and mezu process. We have examined properties of polysaccharides isolated from two different soy sauces which were made by the commercial process (CSP-0) and the traditional Korean process (KTSP-0) as well as their macrophage activities. Two polysaccharides have not effected the RAW 264.7 cells viability. The effects of CSP-0 and KTSP-0 on RAW 264.7 cells were demonstrated by the production of nitric oxide (NO), and reactive oxygen species (ROS). The CSP-0 and KTSP-0 significantly augmented NO and ROS productions by RAW 264.7 cells under a dose dependent manner. However, the activity of KTSP-0 was more potent than that of the CSP-0 at $1,000{\mu}g/m{\ell}$. The productions of IL-6 and TNF-${\alpha}$ were determined by real-time PCR and ELISA. mRNA expression levels of IL-6 and TNF-${\alpha}$ by KTSP-0 at $1,000{\mu}g/m{\ell}$ indicated 63 and 71 times higher than negative controls, respectively. Also, the production of IL-6 and TNF-${\alpha}$ by KTSP-0 at $1,000{\mu}g/m{\ell}$ showed 32.1 and 4.5 times higher than those by the CSP-0. To assess phagocytosis activities, the effects of CSP-0 and KTSP-0 on mRNA expression of Fc receptor I and II (FcR I, II) are being determined by RT-PCR products. Only the KTSP-0 showed enhanced expressions of mRNA expression for FcR I in a dose dependent manner, whereas the CSP-0 did not affect either the FcR I or II expressions. The above data lead us to conclude that the macrophage activations of Korean traditional soy sauce polysaccharide are higher than that of the commercial soy sauce polysaccharide.

Role of LPS-activated Macrophages in the Differentiation of Mesenchymal Stem Cells into Smooth Muscle Cells (중간엽 줄기세포의 평활근 세포로의 분화에서 LPS에 의해 활성화된 대식세포의 역할)

  • Lee, Mi Jeong;Do, Eun Kyoung;Kim, Jae Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.137-142
    • /
    • 2013
  • Human adipose-derived mesenchymal stem cells (hMSCs) are highly useful for vascular regeneration of injured or inflamed tissue. Lipopolysaccharide (LPS) is a potent activator of macrophages and stimulates macrophages to release inflammatory cytokines. In the present study, we explored the role of LPS-activated macrophages in the differentiation of hMSCs to smooth muscle cells (SMCs). We demonstrated that conditioned medium from LPS-induced macrophages (LPS CM) stimulates differentiation of hMSCs to SMCs, as evidenced by increased expression of smooth muscle-specific markers, including alpha-smooth muscle actin (${\alpha}$-SMA), smooth muscle-myosin heavy chain, and calponin. LPS induced the secretion of $PGF2{\alpha}$ from macrophages, and $PGF2{\alpha}$ treatment stimulated expression levels of SMC-specific markers in hMSCs. Furthermore, small interfering RNA-mediated silencing of the $PGF2{\alpha}$ receptor inhibited LPS CM-stimulated ${\alpha}$-SMA expression. These results suggest that LPS-activated macrophages promote differentiation of hMSCs to SMCs through a $PGF2{\alpha}$-dependent mechanism.

Effects of Plant Water Extract Codonopsis Lanceolatae on Mouse Immune Cell Activation Ex Vivo (더덕 물 추출물의 경구 투여가 마우스 면역 세포 활성에 미치는 효과)

  • Ryu, Hye-Sook;Kim, Kyoung-Ok;Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.3
    • /
    • pp.207-212
    • /
    • 2009
  • Codonopsis lanceolatae has been used as one of the traditional remedies as well as food source. However, few studies on their immunomodulating effects have been reported. We previously reported that ex vivo supplementation of Codonopsis lanceolatae water extracts enhanced splenocyte proliferation compared to the control group. In order to elucidate its ex vivo effect, six to seven week old balb/c mice were fed ad libitum on a chow diet and water extracts of Codonopsis lanceolatae were orally administrated every other day for four weeks at two different concentrations (50 and 500 mg/kg B.W). After preparing the single cell suspension, the proliferation of splenocytes was determined by MTT (3- [4,5-dimethylthiazol-2-y] -2,5-diphenyl terazolium bromide) assay. The production of cytokine (IL-1${\beta}$, IL-6, TNF-${\alpha}$), secreted by macrophages stimulated with LPS or not, was detected by ELISA assay using a cytokine kit. After 48 hrs of incubation with the mitogen (ConA or LPS) stimulation, the mice splenocyte proliferation in experimental group was statistically increased at two different concentrations than that in control group. The cytokines production was more significantly enhanced at the lower supplementation (500 mg/kg B.W.) group rather than higher concentration (500 mg/kg B.W.) compared to the control group. The results of this study may suggest that the supplementation of water extract of plant mixture could regulate the immune function by increasing the splenocyte proliferation and enhance the immune function through regulating cytokine production capacity by activated macrophages in mice.

Inhibitory Effect of Dendrobium moniliforme on NO and IL-$1{\beta}$ Production in LPS-stimulated Macrophages (LPS로 자극된 대식세포에서 석곡의 NO 및 IL-$1{\beta}$ 생성 억제 효과)

  • Park, Ga-Young;Bae, Chang-Hwan;Park, Sun-Young;Kim, Ji-Hee;Ko, Woo-Shin;Kim, Young-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • 석곡은 난초과의 여러해살이풀 Dendrobium moniliforme의 지상부를 건조한 것으로 예로부터 양위생진(養胃生津), 자음제열(滋陰除熱) 등의 효능이 있어 해열, 진통의 작용과 위액분비 촉진, 혈압강하의 작용이 있는 것으로 알려져 있다. 본 연구에서는 석곡의 항염증 작용 기전을 알아보기 위하여 석곡 열수추출물을 대식세포주에 처리하여 NO 및 IL-$1{\beta}$의 생성에 미치는 영향을 조사하였다. LPS로 자극된 대식세포주 RAW264.7 세포에서 석곡은 NO 및 IL-$1{\beta}$ 생성과 iNOS 단백질 발현을 저해하였으며, LPS에 의해서 활성화되는 ERK, p38, JNK 효소의 활성을 현저히 억제하였다. 이 결과들로 보아 석곡의 항염증 작용이 MAPK 활성 저해로 인한 NO 및 IL-$1{\beta}$ 생성의 억제 때문인 것으로 사료된다.

  • PDF

Anti-inflammatory Effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 Cells through Regulation of MAPK Signaling Pathway (LPS로 유도된 RAW 264.7 대식세포의 염증반응에서 MAPK 신호경로 조절을 통한 지칭개 에탄올 추출물의 항염증 효과)

  • Kim, Chul Hwan;Lee, Young-Kyung;Jeong, Jin-Woo;Hwang, Buyng Su;Jeong, Yong Tae;Oh, Yong Taek;Cho, Pyo Yun;Kang, Chang-Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Hemistepta lyrata Bunge (HL) has been used as a folk remedy to treat cancer, inflammation, bleeding, hemorrhoids and fever, and leaves and young shoots have been used as famine food. Nevertheless, the biological activities and underlying mechanisms of the anti-inflammatory effects remain unclear. In this study, it was undertaken to explore the functions of the aerial part of HL as a suppressor of inflammation by using RAW 264.7 cells. As immune response parameters, the productions of as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines such tumor necrotic factor (TNF)-α and interleukin (IL)-6 were evaluated. Although the release of TNF-α remained unchanged in HL-treated RAW 264.7 cells, the productions of NO, PGE2 and IL-6 were significantly increased at concentrations with no cytotoxicity. Furthermore, HL significantly attenuated the mitogen-activated protein kinases (MAPK) pathway including decreasing the phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases. Collectively, this study provides evidence that HL inhibits the production of major pro-inflammatory molecules in LPS-stimulated RAW 264.7 cells via suppression of ERK and P38 MAPK signaling pathways. These findings suggest that the beneficial therapeutic effects of HL may be attributed partly to its ability to modulate immune functions in macrophages.

Chemical Properties and Immuno-Stimulating Activities of Crude Polysaccharides from Enzyme Digests of Tea Leaves (녹차 효소 처리 다당의 화학적 특성 및 면역증진 활성)

  • Park, Hye-Ryung;Suh, Hyung Joo;Yu, Kwang-Won;Kim, Tae Young;Shin, Kwang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.664-672
    • /
    • 2015
  • In order to develop new immuno-stimulating ingredients from mature leaves of green tea, crude polysaccharides were isolated from pectinase digests of tea leaves (green tea enzyme digestion, GTE-0), after which their immuno-stimulating activities and chemical properties were examined. GTE-0 mainly contained neutral sugars (54.9%) such as glucose (14.2%), arabinose (12.2%), rhamnose (11.1%), and galacturonic acid (45.1%), which are characteristic of pectic polysaccharides. The anti-complementary activity of GTE-0 was similar to that of polysaccharide K (used as positive control). Number of morphologically activated macrophages was significantly increased in the GTE-0-treated group. GTE-0 significantly augmented $H_2O_2$ and reactive oxygen species production by murine peritoneal macrophage cells in a dose-dependent manner, whereas production of nitric oxide showed the highest activity at a dose of $100{\mu}g/mL$ among all tested concentrations. Murine peritoneal macrophages stimulated with GTE-0 showed enhanced production of various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factors-${\alpha}$ in a dose-dependent manner. Further, GTE-0 induced higher phagocytic activity in a dose-dependent manner. In ex vivo assay for cytolytic activity of murine peritoneal macrophages, GTE-0-treated group showed significantly higher activity compared to the untreated group at an effector-to-target cell ratio of 20. The above results lead us to conclude that polysaccharides from leaves of green tea have a potent immuno-stimulating effect on murine peritoneal macrophage cells.

Effect of Pueraria thunbergiana Extracts on the Activation of Immune Cells (칡 추출물의 면역세포 활성화 효과)

  • Kim, Jong-Jin;Lee, Hyeok-Jae;Yee, Sung-Tae
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2012
  • In this experiment, the effects of Pueraria thunbergiana extracts on the activation of immune cells were studied. An immune cell-activating factor was partially purified from P. thunbergiana by means of physiological saline extraction, acetone precipitation, and heating inactivation. P. thunbergiana extracts increased the proliferation of spleen cells and induced the production of IL-2, IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ by spleen cells. Also, they increased the proliferation of purified B cells and the production of IgM antibody in a dose-dependent fashion. The extract self-induced NO synthesis in a mouse macrophage cell line (RAW264.7). When cell lines were treated with extracts, the cytokines' (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) production was markedly increased. Therefore, P. thunbergiana extract can self-activate spleen cells, B cells, and macrophages. These results might be useful in further studies into a possible immune-activating agent derived from P. thunbergiana for the development of functional foods and drugs.

Adherence-induced gene expression in human alveolar macrophages (표면부착에 의한 사람 폐포대식세포의 유전자 발현에 관한 연구)

  • Chung, Man Pyo;Yoo, Chul Gyu;Han, Sung Koo;Shim, Young-Soo;Rhee, Chong H.;Han, Yang Chol;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.936-944
    • /
    • 1996
  • Background: Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. Adhesion molecules and gene transcription of the inflammatory mediators are known to be associated in this process. To evaluate whether adhesion molecule and transcriptional activation of the inflammatory substances are also involved in the activation of human alveolar macrophage by the adherence procedure, we designed this experiment. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be nonnal by chest cr and alveolar macrophage was harvested. To measure the expression of Interleukin-8(IL-8) mRNA, manganese superoxide dismutase(SOD) mRNA and CD11/CD18 mRNA in human alveolar macrophage of both adherence state and suspension state, Northern blot analysis was done at 0, 2, 4, 8 and 24hrs after the adherence to plastic surface and during suspension state. Then, phorbol myristate acetate(pMA) and N-formyl-methionyl-leucyl-phenylalanine(fMLP) were added respectively in the same experimental condition. Result : 1) Human alveolar macrophages in the adherent state induced IL-8 mRNA and SOD mRNA expression which was maximal at 8 hours after the adherence to plastic surface. But we could not observe the upregulation of CD18 mRNA by surface adherence. 2) PMA induced these mRNA expression both in the adherent cell and the nonadherem cells, but the induction of mRNA expression by fMLP occurred only in the adherent cells. Conclusion: These results suggest that adherence of huamn alveolar macropahge is an important cell-activating event that may play a critical role in the modulation of lung inflammatory respones.

  • PDF