• Title/Summary/Keyword: 대변형 해석

Search Result 230, Processing Time 0.031 seconds

Investigation for Collapse Mode of Stiffened Curved Plate with Tee Shaped Stiffeners (티(Tee)형(型) 보강재로 보강된 곡판의 붕괴모드에 대한 검토)

  • Oh, Young-Cheol;Kim, Kyung-Tak;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.3
    • /
    • pp.295-300
    • /
    • 2011
  • Ship are a box-shaped structure. It is used often fore and aft parts, bilge strake, deck with camber of ship structures. When this structure is compared with flat plate structure, it different to behaviour. Generally, if it subjected to axial compressive load, ultimate strength depend on the change of curvature. Also, In this paper, stiffened curved plate with 1/2+1+1/2 bay model subjected to compressive load carried out the elasto-plastic large deflection series analysis. and parameter effect considered slender ratio, web height/thickness as well as change of curvature and investigated collapse mode for analysis model.

Elasto-plastic Loading-unloading Nonlinear Analysis of Frames by Local Parameter Control (국부변수 조절을 통한 프레임의 탄소성 하중-제하 비선헝 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.435-444
    • /
    • 2001
  • Even todays, accurate and efficient algorithms for the large deformation analysis of elastoplastic frame structures lack due to the complexities of kinematics, material nonlinearities and numerical methods to cater for. The author suggests appropriate beam element based upon the incremental formulation from the 3D rod theory where Cauchy stress and engineering strain are variables to incorporate plasticity equations so that objectivity may be satisfied. A rectum mapping methods which can integrate and satisfy yield criteria efficiently is suggested and a continuation method which has global convergency and quadratic speed is developed as well. leading-unloading example problems are tested and the ideas are proved to be valuable.

  • PDF

Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis (차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측)

  • Kim, Byeong-Sam;Kang, Ki-Jun;Park, Kyoung-Woo;Noh, Kwang-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

A Study on the Deformation and Perforation Problem for Steel Plates Subjected to High-Speed Collision and Superhigh-Speed Collision (고속충돌 및 초고속충돌 강판구조물의 대변형 관통문제에 관한 연구)

  • 원석희;이경언;고재용;이계희;이제명;백점기;이성로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.95-99
    • /
    • 2004
  • This paper describe inner-collision-characteristics of the ship structural plates when the projectile collides with plate-material using LS-DYNA3D which is general and useful finite element analysis tool in collision problem fields. The series analyses were carried out from high speed(41.56m/s-118.9m/s) to ultrahigh speed(544.05m/s-800m/s). Through these analyses we can approach empirical formula to estimate penetration limit of the ship structural plates with which the projectile of various speed collides.

  • PDF

A Study on the Unstable behavior according to Lode and boundary condition of shelled space frame structure (쉘형 스페이스 프레임 구조물의 하중 및 경계조건에 따른 불안정 거동에 관한 연구)

  • Kim, Nam-Seok;Shon, Su-Deog;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.80-85
    • /
    • 2008
  • This paper investigate the structure instability properties of the shelled space frame structure. The large structure must have thin thickness for build the large space structure there fore structure instability review is important when we do structural design. The structure instability of the shelled structure accept it sensitively by varied conditions. This come to a nonlinear problem with be concomitant large deformation. In this study, it is compared unstable behavior according to lode and boundary condition of the shelled space frame structure through numerical method which considered geometrical nonlinear and grasped influence for the instability phenomenon and investigated the fundamental collapse mechanism.

  • PDF

The Petrov-Galerkin Natural Element Method : III. Geometrically Nonlinear Analysis (페트로프-갤러킨 자연요소법 : III. 기하학적 비선형 해석)

  • Cho, Jin-Rae;Lee, Hong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.123-131
    • /
    • 2005
  • According to ow previous study, we confirmed That the Petrov-Galerkin natural element method(PG-NEM) completely resolves the numerical integration inaccuracy in the conventional Bubnov-Galerkin natural element method(BG-NEM). This paper is an extension of PG-NEM to two-dimensional geometrically nonlinear problem. For the analysis, a linearized total Lagrangian formulation is approximated with the PS-NEM. At every load step, the grid points ate updated and the shape functions are reproduced from the relocated nodal distribution. This process enables the PG-NEM to provide more accurate and robust approximations. The representative numerical experiments performed by the test Fortran program, and the numerical results confirmed that the PG-NEM effectively and accurately approximates The large deformation problem.

Simulation of dynamic fracture and fluid-structure interaction in solid propellant rockets : Part 1 (theoretical aspects) (고체추진로켓 내부에서 발생하는 동적 파괴 현상과 유체-고체 상호작용의 시뮬레이션 - Part 1 (이론적 측면))

  • Hwang, Chan-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.286-290
    • /
    • 2008
  • This paper summarizes the components of an explicit aeroelastic solver developed especially for the simulation of dynamic fracture events occurring during the flight of solid propellant rockets. The numerical method combines an explicit Arbitrary Lagrangian Eulerian (ALE) version of the Cohesive Volumetric Finite Element (CVFE) scheme, used to simulate the spontaneous motion of one or more cracks propagating dynamically through a domain with regressing boundaries, and an explicit unstructured finite volume Euler code to follow the flow field during the failure event. A key feature of the algorithm is the ability to adaptively repair and expand the fluid mesh to handle the large geometrical changes associated with grain deformation and crack motion.

A Method for Calculation of Compressive Strength of a One-Sided Stiffened Plate (편면 보강판의 압축강도 해석을 위한 한 방법)

  • C.D. Jang;S.I. Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.117-124
    • /
    • 1991
  • In this paper, a method to overcome inefficiency of the finite element method in the calculation of compressive strength of one-sided stiffened plates, is proposed. In this method the collapse modes of stiffened plates are assumed as follows. a) Overall buckling $\rightarrow$ Overall collapse b) Local buckling $\rightarrow$ Overall collapse c) Local buckling $\rightarrow$ Local collapse In each collapse mode, shape of deflection is assumed, and then elastic large deformation analysis based on the Rayleigh-Ritz method is carried out. One-sided stiffening effect is considered by taking into account of the moment due to eccentricity. Plastic analysis by assuming hinge lines is also carried out. The ultimate strength of a stiffened plate is obtained as the point of intersection of the elastic analysis curve and the plastic one. From this study, it is concluded that the angles between the plastic hinge lines in plastic collapse mode are determined as the ones which give the minimum collapse load, and these angles are different from the ones assumed in the previous studies. Minimum stiffness ratios can also be calculated. Calculated results according to this method show good agreements with the results by the finite element method.

  • PDF

A Study on Seismic Performance of High-Strength Steel(POSTEN60, POSTEN80) Pipe-Section Piers using 3-Dimensional Elastic-Plastic Finite Deformation Analysis (3차원 탄소성 유한변위해석을 이용한 고강도(POSTEN60, POSTEN80) 원형강교각의 내진성능에 관한 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul;Kang, Jae-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.45-54
    • /
    • 2004
  • Recently, as steel structures become higher and more long-spanned, application of high-strength steels is increasing gradually. For seismic design of steel structures using high-strength steels(POSTEN60, POSTEN80), analytical method, can describe the large deformation and inelastic cyclic behavior generated by non-proportional cyclic loading, are required. In this paper, cyclic plasticity model was proposed by results of monotonic loading tests ant cyclic loading tests. Three-dimensional finite element analysis is developed by using proposed model and finite deformation theory and verified as compare with experiment result. Using 3-dimensional elastic-plastic finite deformation analysis, seismic analysis of high-strength steel pipe-section piers are carried out. Also, seismic performance of high-strength steel pipe-section piers in parameter of diameter-thickness ratio was clarified.

Effect of Bend Angle on Plastic Loads of Pipe Bends Under Internal Pressure and In-Plane Bending (내압과 굽힘하중을 받는 곡관의 소성 하중에 굽힘 각도가 미치는 영향)

  • Lee, Kuk-Hee;Oh, Chang-Sik;Yoo, Bong;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.322-330
    • /
    • 2007
  • This paper quantifies the effect of a bend angle of a pipe bend on plastic loads, via small strain and large strain FE limit analyses using elastic-perfectly plastic materials. To consider the effect of the attached straight pipe, two limiting cases are considered. One case corresponds to the pipe bend without the attached straight pipe, and the other to that with a sufficiently long attached straight pipe. For the former case, the FE results suggest that the limit load is not affected by the bend angle for both in-plane bending and internal pressure. For the latter case, however, the bend angle affects plastic loads. An interesting finding is that the plastic load smoothly changes from the limit load of the straight pipe when the bend angle approaches zero to the plastic load of the $90^{\circ}$ pipe bend when the bend angle approaches 90 degree. Based on such observations, closed-form plastic load solutions are proposed for the pipe bend with an arbitrary bend angle under in-plane bending and internal pressure.