• Title/Summary/Keyword: 대기 온도

Search Result 1,378, Processing Time 0.026 seconds

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days (황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석)

  • Moon, Yun Seob;Koo, Youn Seo;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

Climatic Characteristics of August and Summer of 2007 and Long Term Trend of August and Summer Climate (한반도의 2007년 8월과 2007년 여름의 기후특성 및 8월과 여름의 장기 기후변화)

  • Shin, Im Chul;Kim, Tae Ryong;Lee, Eun-Jung;Kim, Eun-Hee;Kim, Eun Suk;Park, Yeon Ok;Bae, Sun-Hee;Yi, Hi-Il
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.471-481
    • /
    • 2007
  • Temperature and precipitation, particularly August and summer, in the Korean peninsular are analyzed. The analyzed period is 1973-2007 for the Korean peninsular (that is, 60 meteorological station average). In addition, 100 year record (1908-2007) of temperature and precipitation in Seoul are also analyzed. Results indicate that the temperatures (mean, maximun, and minimum) of August and summer of 2007, both in Korean peninsular and Seoul, are higher than normal. The increasing rate of minimum temperature for the August and summer during the period from 1973 to 2007 shows greater than the mean and maximum temperature both in Korean peninsular and Seoul due to the global warming and urbanization. Number of tropical night days, defined by the days with above $25^{\circ}C$ in minimum temperature, shows increasing trend both in August and summer from 1973 to 2007 due to the combination effect of the global warming and urbanization. The amount of precipitation, both in August and summer, for Korean peninsular and Seoul shows increasing trend from 1973 to 2007, and 1908 to 2007, respectively. Amount of precipitation and rainy days, both August and summer, during 2000s show greater than those of the 1970s both in Korean peninsular and Seoul. Extreme rainy days (greater than 120mm/day, greater than 80mm/day, greater than 30mm in any 1-hour period and greater than 10mm in any 10-minute period) show increasing trend from 1973 to 2007 for both in August and in summer.

Variations on the Concentration of Dissolved Gaseous Mercury(DGM) at the Juam Reservoir, Korea (주암호의 용존가스상 수은의 농도변화 특성에 관한 연구)

  • Park, Jong-Sung;Oh, Se-Hee;Shin, Mi-Yeon;Yi, Seung-Muk;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.667-676
    • /
    • 2006
  • The reduction of $Hg^{2+}$ in the aqueous phase results in the production of dissolved gaseous mercury(DGM), and the volatilization of DGM has been identified as an important mechanism for the loss of Hg from waterbodies to the atmosphere. Although mercury emission in the world is known to be mostly from Asia, there have been few studies of measuring DGM concentrations in lakes in Asia. In this study, DGM concentrations were measured at Juam reservoir($35^{\cir}00'N,\;127^{\circ}14'E$), Korea. The results showed that the average concentrations of DGM at the upper and down stream of the lake during summer time were $95{\pm}8\;and\;130{\pm}15$ pg/L, respectively and the concentration of total mercury(TM) at the upper and down stream was $2.1{\pm}0.7,\;1.7{\pm}0.3$ ng/L respectively. Average DGM concentration during summer time($101{\pm}14pg/L$) was approximately 5.5 times higher than that during fall($18{\pm}0.1pg/L$). The DGM concentrations ai the midstream decreased from 32 to 13.7 pg/L during rain event, while the TM concentrations increased from 2.2 ng/L to 2.7 ng/L indicating the deposition of mercury from the atmosphere. Also, the diurnal patterns between DGM concentrations and UV intensities were observed. Water temperatures and DOC concentrations were significantly related to DGM concentrations, while TM concentrations were negatively related to DGM concentrations(p<0.0001). Comparing with the study of Dill et al.,(2006) the average concentrations of DGM $(109{\pm}15pg/L)\;and\;TM(2.2{\pm} 0.4ng/L)$ at Juam reservoir were approximately 3 and 2.2 times higher than those measured in other lakes(DGM: $38{\pm}16pg/L$, TM: $1.0{\pm}1.2ng/L$).

A rock physics simulator and its application for $CO_2$ sequestration process ($CO_2$ 격리 처리를 위한 암석물리학 모의실헝장치와 그 응용)

  • Li, Ruiping;Dodds, Kevin;Siggins, A.F.;Urosevic, Milovan
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • Injection of $CO_2$ into underground saline formations, due to their large storage capacity, is probably the most promising approach for the reduction of $CO_2$ emissions into the atmosphere. $CO_2$ storage must be carefully planned and monitored to ensure that the $CO_2$ is safely retained in the formation for periods of at least thousands of years. Seismic methods, particularly for offshore reservoirs, are the primary tool for monitoring the injection process and distribution of $CO_2$ in the reservoir over time provided that reservoir properties are favourable. Seismic methods are equally essential for the characterisation of a potential trap, determining the reservoir properties, and estimating its capacity. Hence, an assessment of the change in seismic response to $CO_2$ storage needs to be carried out at a very early stage. This must be revisited at later stages, to assess potential changes in seismic response arising from changes in fluid properties or mineral composition that may arise from chemical interactions between the host rock and the $CO_2$. Thus, carefully structured modelling of the seismic response changes caused by injection of $CO_2$ into a reservoir over time helps in the design of a long-term monitoring program. For that purpose we have developed a Graphical User Interface (GUI) driven rock physics simulator, designed to model both short and long-term 4D seismic responses to injected $CO_2$. The application incorporates $CO_2$ phase changes, local pressure and temperature changes. chemical reactions and mineral precipitation. By incorporating anisotropic Gassmann equations into the simulator, the seismic response of faults and fractures reactivated by $CO_2$ can also be predicted. We show field examples (potential $CO_2$ sequestration sites offshore and onshore) where we have tested our rock physics simulator. 4D seismic responses are modelled to help design the monitoring program.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

A study on the soil $CO_2$ Efflux in Quercus acutissima stand at Mt. Bulam urban nature park (불암산 도시자연공원 상수리나무군락의 토양호흡 특성 연구)

  • Kim, Jeong-Seob;Kong, Seok-Jun;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.6
    • /
    • pp.762-768
    • /
    • 2014
  • The purpose of this study is to analyze the soil $CO_2$ efflux and micro-climate of a preserved forest area located in a Mt. bulam urban nature park Quercus acutissima stand from June 2013 to May 2014. The research showed that the soil and heterotrophic $CO_2$ efflux were $28.14{\pm}7.99$ to $582.47{\pm}318.51$ and $12.32{\pm}8.04$ to $415.71{\pm}159.92mg\;CO_2{\cdot}m^{-2}{\cdot}h^{-1}$, respectively. In addition the seasonal soil $CO_2$ efflux of summer, autumn, winter, spring were 1169.1, 454.81, 72.08 and $494.23g\;CO_2{\cdot}m^{-2}{\cdot}month^{-1}$, respectively. On the other hand, the seasonal heterotrophic $CO_2$ efflux were 526.20, 340.09, 45.13 and $374.9g\;CO_2{\cdot}m^{-2}{\cdot}month^{-1}$, respectively. Moreover, the annual soil and heterotrophic $CO_2$ efflux was found to be 2190.22 and $1286.33g\;CO_2{\cdot}m^{-2}{\cdot}yr^{-1}$, respectively. The exponential function was also utilized for the regression analysis in order to correlate the environmental factors with the soil and heterotrophic $CO_2$ efflux. It was found out that both air and soil temperatures were positively correlated with the soil and heterotrophic $CO_2$ efflux. However, the amount of solar radiation and soil moisture has showed low correlation for both types of $CO_2$ efflux. Contribution of root $CO_2$ efflux to total soil $CO_2$ efflux in this Quercus acutissima stand was 33.60%.

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(I) - Characteristics of Photosynthesis and Respiration of Leaves by the Light Intensity - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(I) - 광도변화에 따른 광합성과 호흡 특성 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2005
  • This research was carried out to elucidate the photosnthesis, respiration, and intercellullar $CO_2$ concentration of Kalopanax pictus leaves. The results obtained are summarized as follows; 1. The light compensation points in leaves of Kalopanax pictus seedlings were in the following order; the upper ($34{\mu}mol\;m^{-2}s^{-1}$) middle ($29{\mu}mol\;m^{-2}s^{-1}$) lower leaves ($24{\mu}mol\;m^{-2}s^{-1}$). The light saturated points were at $800{\sim}1200{\mu}mol\;m^{-2}s^{-1}$ in the upper leaves and $400{\mu}mol\;m^{-2}s^{-1}$ in the middle and lower leaves. At the light saturated points, the net photosynthesis rate was in the following order; the upper ($11.1{\mu}mol\;CO_2\;m^{-2}s^{-1}$) middle ($5.15{\mu}mol\;CO_2\;m^{-2}s^{-1}$) lower leaves ($4.01{\mu}mol\;CO_2\;m^{-2}s^{-1}$). The light use efficiency was in the following order; the upper ($0.041{\mu}mol\;CO_2\;{\mu}mol^{-1}$) middle ($0.040{\mu}mol\;CO_2\;{\mu}mol^{-1}$) lower leaves ($0.039{\mu}mol\;CO_2\;{\mu}mol^{-1}$). 2. In the upper leaves of Kalopanax pictus seedlings, the stomatal conductance increased continuously with increasing light intensity. In the middle and lower leaves, it was saturated at $400{\mu}mol\;m^{-2}s^{-1}$. 3. In the upper, middle and lower leaves of Kalopanax pictus seedlings, the intercellular $CO_2$ concentration/the atmospheric $CO_2$ concentration ($C_i/C_a$) ratio rapidly decreased to $600{\mu}mol\;m^{-2}s^{-1}$, and then showed a constant values. 4. In the upper leaves of Kalopanax pictus seedlings, the photorespiration rate was $3.34{\mu}mol\;CO_2\;m^{-2}s^{-1}$ and $CO_2$ compensation point was $48.7{\mu}mol\;mol^{-1}$. Dark respiration rate increased exponentially with increasing leaf temperature, and the photorespiration rate was 2.4 times higher than dark respiration rate.

  • PDF

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration (대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향)

  • Song, Wookyung;Lee, Bora;Cho, Nanghyun;Jung, Sungcheol;Kim, Eun-Sook;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.57-67
    • /
    • 2020
  • Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

(A Scalable Multipoint-to-Multipoint Routing Protocol in Ad-Hoc Networks) (애드-혹 네트워크에서의 확장성 있는 다중점 대 다중점 라우팅 프로토콜)

  • 강현정;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.329-342
    • /
    • 2003
  • Most of the existing multicast routing protocols for ad-hoc networks do not take into account the efficiency of the protocol for the cases when there are large number of sources in the multicast group, resulting in either large overhead or poor data delivery ratio when the number of sources is large. In this paper, we propose a multicast routing protocol for ad-hoc networks, which particularly considers the scalability of the protocol in terms of the number of sources in the multicast groups. The proposed protocol designates a set of sources as the core sources. Each core source is a root of each tree that reaches all the destinations of the multicast group. The union of these trees constitutes the data delivery mesh, and each of the non-core sources finds the nearest core source in order to delegate its data delivery. For the efficient operation of the proposed protocol, it is important to have an appropriate number of core sources. Having too many of the core sources incurs excessive control and data packet overhead, whereas having too little of them results in a vulnerable and overloaded data delivery mesh. The data delivery mesh is optimally reconfigured through the periodic control message flooding from the core sources, whereas the connectivity of the mesh is maintained by a persistent local mesh recovery mechanism. The simulation results show that the proposed protocol achieves an efficient multicast communication with high data delivery ratio and low communication overhead compared with the other existing multicast routing protocols when there are multiple sources in the multicast group.