Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes

시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석

  • Published : 2006.04.01

Abstract

Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

암반(암석)은 생성시와는 다른 온도 압력조건, 대기와 지하수 및 강우 등의 영향으로 풍화작용을 겪게된다. 풍화작용은 암석을 구성하는 조암광물의 화학적 성질을 변화시키며, 불연속면을 따른 물리, 화학적 제반특성에 영향을 준다. 암석이 풍화작용을 겪게 되면 암석(암반)의 물성이 저하되는 현상이 나타나 이로 인한 사면의 파괴, 지하수의 유출, 암종간의 차별풍화로 인한 문제가 발생하기도 한다. 따라서, 대규모 사면 절개시에는 현재의 풍화특성을 분석하여 풍화상태가 앞으로 어떻게 진행될 것인지 예측하고, 이 결과를 토대로 비탈면 보호 및 보강공법에 기준을 판단하는 것이 요구된다. 이러한 요구에 부응하기 위해 기존의 여러 건설사업의 설계단계에서 화학적 풍화속도와 암석의 다른 특성들을 종합하여 분석하는 화학적 풍화민감도 분석 기법이 적용되어 왔다. 그러나 기존의 화학적 풍화민감도 분석은 본래 암반이 아닌 토양의 풍화에 대해 개발된 기법이며 고려되어야 할 변수들의 수가 많고 그 관계가 복잡하며, 공학적 시간단계별로 암반사면의 풍화민감특성을 적용하는데 한계가 있다. 또한, 기존의 방법은 주로 등방성이 강한 화강암질 암석에 특성분석 기법을 적용하여 퇴적암과 같이 이방성이 강한 암반에 적용하기 어려운 문제도 있다. 풍화지형을 연구하는 지형학자들의 연구(Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002)에서 시간에 따라 진행되는 풍화에 의한 암석의 강도저하는 음지수 함수의 형태를 나타내는 것을 제안되었다. 이 관계를 공학적으로 적용하면, 풍화에 작용하는 여러 요인들의 결과를 강도저하로 표현할 수 있으며, 강도라는 암석의 물성을 설명함으로써 공학적으로 의미가 있는 결과를 도출할 수 있다. 따라서, 이 연구에서는 전술한 관계에 의해 풍화진행 시간에 따른 암석의 강도특성 변화를 고려하여 퇴적암에 특화시킨 풍화민감특성 분석을 암반사면의 풍화민감특성을 설명하고 설계에 직접적으로 적용할 수 있는 방법으로 제안한다.

Keywords

References

  1. 김중휘, 정의진, 김정환, 윤운상, 2005, 단양지역 내 석회암지역에 발달하는 용식지형의 특징, 지질학회지, 41권 1호, 45-58
  2. 박형동, 2002, 이암/셰일의 공학적 특성 및 문제, 2002년도 한국지반공학회 암반역학위원회 학술세미나 논문집, 한국지반공학회, 19-30
  3. 서만철, 김민규, 최석원, 1994, 경북 추령터널 부근 암석의 풍화특성에 관한 지구물리화학적 연구, 지질공학회지, 4권 3호, 269-281
  4. 윤지선, 2002, 이암/셰일의 공학적 특성 및 문제, 2002년도 한국지방공학회 암반역학위원회 학술세미나 논문집, 한국지반공학회, 51-63
  5. 이상균, 1999, 지질공학적 특성에 따른 사면안정성에 관한 연구, 서울대학교 석사학위논문, 79p
  6. 일본토목학회, 2005, 암반사면의 조사와 대책, 대한토목학회, 440p
  7. 한국동력자원연구소, 1989, 광양도폭(1:50,000)과 도폭설명서, 한국동력자원연구소, 22p
  8. Brook, N, 1977, A Method for Overcoming Both Shape and Size Effects in Point Load Testing. Proc. Conf. on Rock Engineering, Univ. Newcastle, England, 53-70
  9. Cooke, M. L., and Underwood, C. A., 2001, Fracture termination and step-over at bedding interfaces due to frictional slip and interface opening. Jour. Struc. Geol., Vol 23, 223-238 https://doi.org/10.1016/S0191-8141(00)00092-4
  10. Czerewko, M. A., and Cripps, J. C., 2002, Assessing the durability of mudrocks using the modified jar slake index test, Quar. Jour. Eng. Geol. and Hydrogeol., Vol 34, 153-163
  11. Eyal, Y., Gross, M. R., Engelder, T., and Becker, A., 2001, Joint development during fluctuation of the regional stress field in southern Israel, Jour. Struc. Geol., Vol 23, 279-296 https://doi.org/10.1016/S0191-8141(00)00096-1
  12. Folk, R. L., 1968. Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, TX. 170p
  13. Forth, R. A., Butcher, D. and Senior, R., 1999, Hazard mapping of karst along the coast of the Algarve, Portugal. Engineering Geology, Vol 52, 67-74 https://doi.org/10.1016/S0013-7952(98)00056-8
  14. Hertz, D. B. and Thomas, H., 1983, Risk analysis and its application, John Wiley & Sons, New York
  15. Hodson, M. E., and Langan, S. J., 1999, Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rate determination, Environmental Pollution, Vol 106, 73-81 https://doi.org/10.1016/S0269-7491(99)00058-5
  16. Hodson, M. E., Langan, S. J., and Wilson, M. J., 1996, A sensitivity analysis of the PROFILE model in relation to the calculation of soil weathering rates, Appl. Geochemistry, Vol 11, 835-844 https://doi.org/10.1016/S0883-2927(96)00048-0
  17. Kaufmann, Q. and Quinif, Y., 2002, Geohazard map of cover-collapse sinkholes in the Toumaisis area, southern Belgium. Eng. Geol., Vol 65, 117-124 https://doi.org/10.1016/S0013-7952(01)00118-1
  18. Matsukura, Y., and Matsuoka, N., 1991, Rates of tafoni weathering on uplifted shore platforms in Nojima-zaki, Boso Peninsula, Japan, Earth Surf. Proc. Landform, Vol 16, 51-56
  19. Nilsson, J., and Grennfelt, P., 1988, Workshop report. In: Nilsson, J., and Grennfelt, P. (Eds), 1988, Critical Loads for Sulphur and Nitrogen, Report from a Workshop held at Skokloster, Sweden, March 1988. Nordic Council of Ministers and the United Nations Economic Commission for Europe, 7-32. Stockholm, Sweden
  20. Norwick, S. A., and Dexter, L. R., 2002, Rates of development of tafoni in the Moenkopi and Kaibab Formations in meteor crater and on the Colorado Plateau, Northeastern Arizona, Earth Surf. Process. Landforms, Vol 27, 11-26 https://doi.org/10.1002/esp.276
  21. Oguchi, C. T., Hatta, T., and Matsukura, Y., 1994, Changes in rock properties of porous rhyolite through 40,000 years in Kozu-shima, Japan, Geog. Rev. Japan, Vol 67A, 775-793 (in Japanese with English abstract)
  22. Paik, I. S., 1998, Vertic paleosols from the Sindong Group: occurrences, paleo-environments, and stratigraphy. Jour. of the Geol. Soc. of Korea Vol 34, 58-72. (In Korean with English abstract)
  23. Paik, I. S., Lee, Y. I., 1998, Desiccation cracks in vertic palaeosols of the Cretaceous Hasandong Formation, Korea: genesis and palaeo-environmental implications. Sed. Geol., Vol 119, 161-179 https://doi.org/10.1016/S0037-0738(98)00041-4
  24. Posch, M., Hettelingh, J. P., de Smet, P. A. M., and Downing, R. J. (Eds.), 1997, Calculation and Mapping of Critical Thresholds in Europe (Status Report 1997): Co-ordination Center for Effects. RIVM, Netherlands
  25. Price, J. R., and Velbel, M. A., 2003, Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks, Chern. Geol., Vol 202, 397-416 https://doi.org/10.1016/j.chemgeo.2002.11.001
  26. Sunamura, T., 1996, A physical model for the rate of coastal tafoni development, The Jour. of Geol., Vol 104, 741-748 https://doi.org/10.1086/629866
  27. Sverdrup, H. U., and Warfvinge, P., 1988, Assessment of critical loads of acid deposition on forest soils. In: Nilsson, J., and Grennfelt, P. (Eds), 1988, Critical Loads for Sulphur and Nitrogen, Report from a Workshop held at Skokloster, Sweden, March 1988. Nordic Council of Ministers and the United Nations Economic Commission for Europe, 81-130. Stockholm, Sweden
  28. Warfvinge, P., and Sverdrup, H., 1995, Critical loads of acidity to Swedish Forest soils (Reports in Ecology and Environmental Engineering 5:1995), Lund. University, Lund., Sweden
  29. Werner, B., and Spranger, T., 1996, Mapping Critical Levels/Loads and Geographical Areas Where they are Exceeded 1996 (Federal Environmental Agency Texte 71/96), Federal Environmental Agency, Germany
  30. Wilkins, S. J., Gross, M. R., Wacker, M., Eyal, Y., and Engelder, T., 2001, Faulted joints: kinematics, displacement - length scaling relations and criteria for their identification, Jour. Struc, Geol., Vol 23, 315-327 https://doi.org/10.1016/S0191-8141(00)00098-5