DOI QR코드

DOI QR Code

Effects of Drought Stress and Nitrogen Fertilization on Growth and Physiological Characteristics of Pinus densiflora Seedlings Under Elevated Temperature and CO2 Concentration

대기 중 온도 및 CO2 농도 조절에 따른 건조 스트레스와 질소 시비가 소나무의 생장 및 생리적 특성에 미치는 영향

  • Song, Wookyung (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Lee, Bora (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Cho, Nanghyun (Department of Environmental Science, Kangwon National University) ;
  • Jung, Sungcheol (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Kim, Eun-Sook (Division of Forest Ecology and Climate Change, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Division of Forest Ecology and Climate Change, National Institute of Forest Science)
  • 송우경 (국립산림과학원 기후변화생태연구과) ;
  • 이보라 (국립산림과학원 기후변화생태연구과) ;
  • 조낭현 (강원대학교 환경학과) ;
  • 정성철 (국립산림과학원 기후변화생태연구과) ;
  • 김은숙 (국립산림과학원 기후변화생태연구과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과)
  • Received : 2020.04.23
  • Accepted : 2020.06.26
  • Published : 2020.06.30

Abstract

Pinus densiflora is the most widely distributed tree species in South Korea. Its ecological and socio-cultural attributes makes it one of the most important tree species in S. Korea. In recent times however, the distribution of P. densiflora has been affected by dieback. This phenomenon has largely been attributed to climate change. This study was conducted to investigate the responses of growth and physiology of P. densiflora to drought and nitrogen fertiliz ation according to the RCP 8.5 scenario. A Temperature Gradient Chamber (TGC) and CO2. Temperature Gradient Chamber (CTGC) were used to simulate climate change conditions. The treatments were established with temperature (control versus +3 and +5℃; aCeT) and CO2 (control: aCaT versus x1.6 and x2.2; eCeT), watering(control versus drought), fertilization(control versus fertilized). Net photosynthesis (Pn), stomatal conductance (gs), biomass and relative soil volumetric water content (VWC) were measured to examine physiological responses and growth. Relative soil VWC in aCeT significantly decreased after the onset of drought. Pn and gs in both aCeT and eCeT with fertiliz ation were high before drought but decreased rapidly after 7 days under drought because nitrogen fertilization effect did not last long. The fastest mortality was 46 days in aCeT and the longest survival was 56 days in eCeT after the onset of drought. Total and partial biomass (leaf, stem and root) in both aCeT and eCeT with fertiliz ation were significantly high, but significantly low in aCeT. The results of the study are helpful in addressing P. densiflora vulnerability to climate change by highlighting physiological responses related to carbon allocation under differing simulated environmental stressors.

본 연구는 최근 기후변화로 인해 피해가 증가하고 있는 소나무를 대상으로 고온 및 고농도 CO2 환경에 인위적으로 건조 스트레스를 주어 질소 시비에 따른 생리적 반응과 생물량 변화 특성을 구명하고자 수행되었다. 토양수분은 고온처리에서 가장 빨리 감소하여 수목의 건조 스트레스를 제공하는 것으로 나타났다. 결과적으로 토양수분이 가장 빨리 감소한 고온처리에서 순광합성율과 기공전도도 모두 감소하였다. 생리적 반응의 경우, 무관수 초기에는 질소가 시비되는 모든 처리구에서 대조구 보다 높은 경향을 보였으나 건조 스트레스 기간이 길어짐에 따라 질소 시비 효과는 나타나지 않았다. 고사율은 고온처리에서 빠르게 진행되었으며 고농도 CO2 농도 환경에서는 평균적으로 21.5% 오래 생존하였다. 생물량의 경우 질소 시비와 CO2 시비효과가 뿌리에서 무관수로 인한 건조 스트레스가 주는 억제 효과를 완화시켜 부위별·총 생물량 증가에 영향을 준 것으로 판단된다. 본 연구결과를 통해 기후변화가 산림생태계에 끼칠 수 있는 영향을 정량적으로 구명함으로서 기후변화에 대응하여 산림을 효율적으로 관리하는데 필수적인 자료를 활용하고, 향후 미기상 조건에 다른 산림생태 예측모델 활용에 중요한 역할을 할 것으로 기대된다.

Keywords

References

  1. Adams, H. D., M. Guardiola-Claramonte, G. A. Barron-Gafford, J. C. Villegas, D. D. Breshears, C. B. Zou, P. A. Troch, and T. E. Huxman, 2009: Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences 106(17), 7063-7066. https://doi.org/10.1073/pnas.0901438106
  2. Ainsworth, E. A., and A. Rogers, 2007: The response of photosynthesis and stomatal conductance to rising [$CO_2$]: mechanisms and environmental interactions. Plant, Cell Environment 30(3), 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  3. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, and E. T. Hogg, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology Management 259(4), 660-684. https://doi.org/10.1016/j.foreco.2009.09.001
  4. Anderegg, W. R., J. M. Kane, and L. D. Anderegg, 2013: Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change 3(1), 30-36. https://doi.org/10.1038/nclimate1635
  5. Cao, X., J. Jia, C. Zhang, H. Li, T. Liu, X. Jiang, A. Polle, C. Peng, and Z. B. Luo, 2014: Anatomical, physiological and transcriptional responses of two contrasting poplar genotypes to drought and re‐watering. Physiologia Plantarum 151(4), 480-494. https://doi.org/10.1111/ppl.12138
  6. Chang, H., S. H. Han, J. An, M. J. Park, and Y. Son, 2019: Relationship between Soil Water and Physiological and Growth Responses of Pinus densiflora Seedlings under Open-field Experimental Warming and Precipitation Manipulation. Journal of Climate Change Research 10(2), 145-152. (in Korean with English abstract) https://doi.org/10.15531/ksccr.2019.10.2.145
  7. Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural Forest Meteorology 54(2-4), 107-136. https://doi.org/10.1016/0168-1923(91)90002-8
  8. Comas, L., S. Becker, V. M. V. Cruz, P. F. Byrne, and D. A. Dierig, 2013: Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4, 442pp.
  9. Duan, H., A. P. O'Grady, R. A. Duursma, B. Choat, G. Huang, R. A. Smith, Y. Jiang, and D. T. Tissue, 2015: Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [$CO_2$] and temperature. Tree Physiology 35(7), 756-770. https://doi.org/10.1093/treephys/tpv047
  10. Farquhar, G. D., and T. D. Sharkey, 1982: Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1), 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533
  11. Gessler, A., M. Schaub, and N. G. McDowell, 2017: The role of nutrients in drought‐induced tree mortality and recovery. New Phytologist 214(2), 513-520. https://doi.org/10.1111/nph.14340
  12. Girardin, M. P., O. Bouriaud, E. H. Hogg, W. Kurz, N. E. Zimmermann, J. M. Metsaranta, R. de Jong, D. C. Frank, J. Esper, and U. Buntgen, 2016: No growth stimulation of Canada's boreal forest under half-century of combined warming and [$CO_2$ fertilization. Proceedings of the National Academy of Sciences 113(52), E8406-E8414.
  13. Goldstein, G., Bucci, SJ., Scholz. FG., 2013: Why do trees adjust water relations and hydraulic architecture in response to nutrient availability? Tree Physiology 33(3), 238-240. https://doi.org/10.1093/treephys/tpt007
  14. Han, S. H., H. Chang, and Y. Son, 2018: Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings. Journal of Korean Society of Forest Science 107(1), 43-49. https://doi.org/10.14578/jkfs.2018.107.1.43
  15. Hopkins, W., and N. Huner, 2008: Introduction to Plant Physiology (4 ed.). The University of Western Ontario, London.
  16. Hopkins, W. G., 1999: Introduction to Plant Physiology . John Wiley and Sons.
  17. Huang, J.-G., Y. Bergeron, B. Denneler, F. Berninger, and J. Tardif, 2007: Response of forest trees to increased atmospheric $CO_2$. Critical Reviews in Plant Sciences 26(5-6), 265-283. https://doi.org/10.1080/07352680701626978
  18. IPCC, 2013: Climate change 2013: The physical science basis, 25, Cambridge University Press, Cambridge.
  19. IPCC, 2018: Global warming of $1.5^{\circ}C$ An IPCC Special Report on the impacts of global warming of $1.5^{\circ}C$ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, Cambridge University Press, Cambridge.
  20. King, J. S., M. E. Kubiske, K. S. Pregitzer, G. R. Hendrey, E. P. McDonald, C. P. Giardina, V. S. Quinn, and D. F. Karnosky, 2005: Tropospheric $O_3$ compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric $CO_2$. New Phytologist (168), 623-636.
  21. Kim, P. G., and E. J. Lee, 2001: Ecophysiology of Photosynthesis 1: Effects of Light Intensity and Intercellular $CO_2$ Pressure on Photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3(2), 126-133. (in Korean with English abstract)
  22. El Kohen, A., L. Venet, and M. Mousseau, 1993: Growth and Photosynthesis of two deciduous forest species at elevated carbon dioxide. Functional Ecology 7(4), 480-488. https://doi.org/10.2307/2390035
  23. Korea Forest Service, 2006: Forest Resources Creation and Management Act, Korea Forest Service.
  24. Korea Meteorological Administration, 2019: Annual Climatological Report, Korea Meteorological Administration.
  25. Kumarathunge, D. P., J. E. Drake, M. G. Tjoelker, R. Lopez, S. Pfautsch, A. Varhammar, and B. E. Medlyn, 2019: The temperature optima for tree seedling photosynthesis and growth depend on water inputs. Global Change Biology.
  26. Leuzinger, S., C. Bigler, A. Wolf, and C. Korner, 2009: Poor methodology for predicting large-scale tree die-off. Proceedings of the National Academy of Sciences 106(38), E106-E106. https://doi.org/10.1073/pnas.0908053106
  27. Lim, J.-H., E. Kim, B. Lee, S. Kim, and K. Jang, 2017: An analysis of the hail damages to Korean forests in 2017 by meteorology, species and topography. Korean Journal of Agricultural Forest Meteorology 19(4), 280-292. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2017.19.4.280
  28. Lim, J.-H., and J. H. Shin, 2005: Forest vegetation shift and plant phenological changes according to global warming. Nature Conservation 120, 8-17. (in Korean with English abstract)
  29. Luo, J., H. Li, T. Liu, A. Polle, C. Peng, and Z.-B. Luo, 2013: Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany 64(14), 4207-4224. https://doi.org/10.1093/jxb/ert234
  30. Matyssek, R., A. R. Kozovits, J.-P. Schnitzler, H. Pretzsch, J. Dieler, and G. Wieser, 2014: Forest trees under air pollution as a factor of climate change. Trees in a Changing Environment, 117-163.
  31. McDowell, N., W. T. Pockman, C. D. Allen, D. D. Breshears, N. Cobb, T. Kolb, J. Plaut, J. Sperry, A. West, and D. G. Williams, 2008: Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist 178(4), 719-739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
  32. Mitchell, P. J., A. P. O'Grady, D. T. Tissue, D. A. White, M. L. Ottenschlaeger, and E. A. Pinkard, 2013: Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist 197(3), 862-872. https://doi.org/10.1111/nph.12064
  33. NOAA, 2020: Climate at a Glance: Global Mapping https://www.ncdc.noaa.gov/cag/. National Centers for Environmental information.
  34. Nunes-Nesi, A., A. R. Fernie, and M. Stitt, 2010: Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant 3(6), 973-996. https://doi.org/10.1093/mp/ssq049
  35. Oren, R., D. S. Ellsworth, K. H. Johnsen, N. Phillips, B. E. Ewers, C. Maier, K. V. Schäfer, H. McCarthy, G. Hendrey, and S. G. McNulty, 2001: Soil fertility limits carbon sequestration by forest ecosystems in a $CO_2$-enriched atmosphere. Nature New Biology 411(6836), 469pp. https://doi.org/10.1038/35078064
  36. Prior, L. D., and D. M. Bowman, 2014: Big eucalypts grow more slowly in a warm climate: Evidence of an interaction between tree size and temperature. Global Change Biology 20, 2793-2799. https://doi.org/10.1111/gcb.12540
  37. Reich, P. B., K. M. Sendall, A. Stefanski, R. L. Rich, S. E. Hobbie, and R. A. Montgomery, 2018: Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562(7726), 263-267. https://doi.org/10.1038/s41586-018-0582-4
  38. Solomon, S., M. Manning, M. Marquis, and D. Qin, 2007: Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (4 ed.). Cambridge University Press.
  39. Song, J., Y. Wang, Y. Pan, J. Pang, X. Zhang, J. Fan, and Y. Zhang, 2019: The influence of nitrogen availability on anatomical and physiological responses of Populus $alba{\times}P$. glandulosa to drought stress. BMC Plant Biology 19(1), 63pp. https://doi.org/10.1186/s12870-019-1667-4
  40. Stirling, C., M. Heddell-Cowie, M. Jones, T. Ashenden, and T. Sparks, 1998: Effects of elevated $CO_2$ and temperature on growth and allometry of five native fast-growing annual species. New Phytologist 140(2), 343-354. https://doi.org/10.1046/j.1469-8137.1998.00273.x
  41. Taiz, L., and E. Zeiger, 2006: Plant Physiology. Sinauer Associates Inc., Sunderland, MA.
  42. Tardieu, F., and T. Simonneau, 1998: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 419-432.
  43. Tarvainen, L., and T. Näsholm, 2017: Can adjustments in foliar nitrogen-use efficiency reduce drought stress impacts on boreal trees? Tree Physiology 37(4), 415-417. https://doi.org/10.1093/treephys/tpx003
  44. Brodribb, T., 1996: Dynamics of Changing Intercellular $CO_2$ Concentration ($c_i$) during Drought and Determination of Minimum Functional ($c_i$. Plant Physiology 111, 179-185. https://doi.org/10.1104/pp.111.1.179
  45. Tran, T. T., M. Kano-Nakata, M. Takeda, D. Menge, S. Mitsuya, Y. Inukai, and A. Yamauchi, 2014: Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant and Soil 378(1-2), 139-152. https://doi.org/10.1007/s11104-013-2013-5
  46. Warren, J. M., R. J. Norby, and S. D. Wullschleger, 2011: Elevated $CO_2$ enhances leaf senescence during extreme drought in a temperate forest. Tree Physiology 31(2), 117-130. https://doi.org/10.1093/treephys/tpr002
  47. Will, R. E., S. M. Wilson, C. B. Zou, and T. C. Hennessey, 2013: Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytologist 200(2), 366-374. https://doi.org/10.1111/nph.12321
  48. Woodward, F. I., 2002: Potential impacts of global elevated $CO_2$ concentrations on plants. Current Opinion in Plant Biology 5(3), 207-211. https://doi.org/10.1016/S1369-5266(02)00253-4
  49. Yang, Y., J. Guo, G. Wang, L. Yang, and Y. Yang, 2012: Effects of drought and nitrogen addition on photosynthetic characteristics and resource allocation of Abies fabri seedlings in eastern Tibetan Plateau. New Forests 43(4), 505-518. https://doi.org/10.1007/s11056-011-9295-3
  50. Zhang, H., Y. Gao, B. Y. Tasisa, J. M. Baskin, C. C. Baskin, X.-T. Lu, and D. Zhou, 2019: Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia. Science of The Total Environment 647, 1344-1350. https://doi.org/10.1016/j.scitotenv.2018.08.025
  51. Zheng, H., X. Zhang, W. Ma, J. Song, S. U. Rahman, J. Wang, and Y. Zhang, 2017: Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei. Environmental Experimental Botany 138, 77-87. https://doi.org/10.1016/j.envexpbot.2017.02.016