Variations on the Concentration of Dissolved Gaseous Mercury(DGM) at the Juam Reservoir, Korea

주암호의 용존가스상 수은의 농도변화 특성에 관한 연구

  • Park, Jong-Sung (Department of Environmental Health, Seoul National University) ;
  • Oh, Se-Hee (Department of Environmental Health, Seoul National University) ;
  • Shin, Mi-Yeon (Department of Environmental Health, Seoul National University) ;
  • Yi, Seung-Muk (Department of Environmental Health, Seoul National University) ;
  • Zoh, Kyung-Duk (Department of Environmental Health, Seoul National University)
  • 박종성 (서울대학교 보건대학원 환경보건학과) ;
  • 오세희 (서울대학교 보건대학원 환경보건학과) ;
  • 신미연 (서울대학교 보건대학원 환경보건학과) ;
  • 이승묵 (서울대학교 보건대학원 환경보건학과) ;
  • 조경덕 (서울대학교 보건대학원 환경보건학과)
  • Published : 2006.06.30

Abstract

The reduction of $Hg^{2+}$ in the aqueous phase results in the production of dissolved gaseous mercury(DGM), and the volatilization of DGM has been identified as an important mechanism for the loss of Hg from waterbodies to the atmosphere. Although mercury emission in the world is known to be mostly from Asia, there have been few studies of measuring DGM concentrations in lakes in Asia. In this study, DGM concentrations were measured at Juam reservoir($35^{\cir}00'N,\;127^{\circ}14'E$), Korea. The results showed that the average concentrations of DGM at the upper and down stream of the lake during summer time were $95{\pm}8\;and\;130{\pm}15$ pg/L, respectively and the concentration of total mercury(TM) at the upper and down stream was $2.1{\pm}0.7,\;1.7{\pm}0.3$ ng/L respectively. Average DGM concentration during summer time($101{\pm}14pg/L$) was approximately 5.5 times higher than that during fall($18{\pm}0.1pg/L$). The DGM concentrations ai the midstream decreased from 32 to 13.7 pg/L during rain event, while the TM concentrations increased from 2.2 ng/L to 2.7 ng/L indicating the deposition of mercury from the atmosphere. Also, the diurnal patterns between DGM concentrations and UV intensities were observed. Water temperatures and DOC concentrations were significantly related to DGM concentrations, while TM concentrations were negatively related to DGM concentrations(p<0.0001). Comparing with the study of Dill et al.,(2006) the average concentrations of DGM $(109{\pm}15pg/L)\;and\;TM(2.2{\pm} 0.4ng/L)$ at Juam reservoir were approximately 3 and 2.2 times higher than those measured in other lakes(DGM: $38{\pm}16pg/L$, TM: $1.0{\pm}1.2ng/L$).

환경 중에서 $Hg^{2+}$의 환원과정을 통하여 용존가스상 수은인 DGM(dissolved gaseous mercury)이 생성이 되고, 이 DGM의 대기로의 휘발이 수체에서의 중요한 이동 제거 기작이다. 아시아에서 배출하는 수은의 양이 전 세계적으로 큰 비중을 차지하는 것으로 알려져 있지만, 이 지역에 대한 DGM의 조사는 거의 없는 실정이다. 본 연구에서는 주암호를 대상으로 실시간으로 DGM 및 총 수은(TM) 농도변화를 관찰하였다. 연구 결과 여름철 주암호의 상류에서 하류까지 DGM 평균농도의 변화는 $95{\pm}8pg/L$에서 $130{\pm}15pg/L$로 증가했으나, TM의 평균농도는 상류지점 $2.1{\pm}0.7ng/L$, 하류지점 $1.7{\pm}0.3ng/L$로 낮아지는 경향을 보였다. 계절적인 DGM의 농도를 비교한 결과, 여름철 주암호의 총 DGM의 평균농도는 $109{\pm}15pg/L$로 가을철의 $19{\pm}pg/L3$ 보다 약 5.5배 높았다. 중류지점에서의 강우에 따른 DGM 평균농도의 변화는 비가 오기 전 32 pg/L에서 비가 내리는 동안 13.7 pg/L로 약 58% 감소했으며, TM은 2.2 ng/L에서 2.7 ng/L로 약 19% 증가했다. 가을철 상류지점의 일중 자외선과 DGM 평균농도의 변화는 빛의 강도와 비슷한 경향을 나타냈다. DGM의 농도와 수온, DOC의 농도 간의 통계적 분석결과는 유의한 상관관계(${\alpha}$=0.05)를 보였으나, TM의 농도는 반대의 상관관계를 나타냈다(p<0.0001). Dill et al.,(2006)의 연구와 비교한 결과, 주암호 총(n=23) DGM의 평균농도는 $109{\pm}15pg/L$로 국외 호수의 $38{\pm}16pg/L$보다 약 3배 높았고, TM의 평균 농도(n=11)는 $2.2{\pm}0.4ng/L$로 국외호수의 $1.0{\pm}1.2ng/L$ 보다 약 2.2배 높게 나타났다.

Keywords

References

  1. Meili, M., 'The coupling of mercury and organic matter in the biogeochemical cycle - towards a mechanistic model for the boreal forest zone,' Water Air Soil Pollut., 56, 333-347(1991) https://doi.org/10.1007/BF00342281
  2. National Research council. National Academy Press, Washington, DC(2000)
  3. Fitzgerald, W. F., Mason, R. P., and Vandal, G. M., 'Atmospheric cycling and air-water exchange of mercury over mid-continental regions,' Water Air Soil Pollut., 56, 745-767(1991) https://doi.org/10.1007/BF00342314
  4. Keeler, G. J., 'Lake Michigan Urban Air Toxics Study,' US EPA, Atmospheric Research and Exposure Assessment Laboratory. EPA-600/SR-941191(1994a)
  5. Keeler, G. J., Hoyer, M. E., and Lamborg, C. H., 'Integration and Synthesis,' Mercury Pollution, Watras, C. J. and Huckabee, J. W.(Eds.), Lewis Publishers., Boca Raton, FL, pp. 231-241(1994b)
  6. Slemr, F., Schuster, G., and Seiler, W., 'Distribution, speciation and budget of atmospheric mercury,' J. Atmos. Chem., 3, 407-434(1985) https://doi.org/10.1007/BF00053870
  7. Tokos, J., Hall, B., Calhoun, J., and Prestbo, E., 'Honogeneous gas-phase reaction of $Hg^O\;with\;H_2O_2,\;O_3,\;CH_3I,\;and(CH_3)_3S$; implications for atmospheric Hg cycling,' Atmos. Environ., 32, 823-827(1998) https://doi.org/10.1016/S1352-2310(97)00171-4
  8. Mason, R. P., Fitzgerald, W. F., and Morel, M. M., 'The biogeochemical cycling of elemental mercury: anthropogenic influences,' Geochim. Cosmochim. Acta., 58, 3191-3198(1994) https://doi.org/10.1016/0016-7037(94)90046-9
  9. Schroeder, W. H. and Munthe, J., 'Atmospheric mercury-an overview,' Atmos. Environ., 32, 809-822(1998) https://doi.org/10.1016/S1352-2310(97)00293-8
  10. Xiao, Z. F., Munthe, J., Schroeder, W. H., and Lindqvist, O., 'Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden,' Tellus, 43(B), 267-279(1991) https://doi.org/10.1034/j.1600-0889.1991.t01-1-00001.x
  11. Lindberg, S. E., Meyers, T. P., and Munthe, J., 'Evasion of mercury vapor from the surface of a recently limed acid forest lake in Sweden,' Water Air Soil Pollut., 85, 725-730(1995) https://doi.org/10.1007/BF00476915
  12. Waite, D. T., Snihura, A. D., Liu, Y., and Huang, G. H., 'Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH,' Chemosphere, 49, 341-351(2002) https://doi.org/10.1016/S0045-6535(02)00278-3
  13. Amyot, M., Mierle, G., Lean, D., and McQueen D. J., 'Effects of solar radiation on the formation of dissolved gaseous mercury in temperate lakes,' Geochim. Cosmochim. Acta., 61, 975-987(1997c) https://doi.org/10.1016/S0016-7037(96)00390-0
  14. Ravichandran, M., 'Interactions between mercury and dissolved organic matter-a review,' Chemosphere, 55, 319-331(2004) https://doi.org/10.1016/j.chemosphere.2003.11.011
  15. Amyot, M., Mierle, G., Lean, D., and McQueen, D. J., 'Sunlight-induced formation of dissolved gaseous mercury in lake waters,' Environ. Sci. Technol., 28, 2366-2371(1994) https://doi.org/10.1021/es00062a022
  16. Zhang, H. and Lindberg, S. E., 'Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater,' Environ. Sci. Technol., 35, 928-935(2001) https://doi.org/10.1021/es001521p
  17. Kim, K., Kim, M., Kim, J., and Lee, G., 'The concentrations and fluxes of total gaseous mercury in a western coastal area of Korea during late March 2001,' Atmos. Environ., 36, 3413-3427(2002) https://doi.org/10.1016/S1352-2310(02)00311-4
  18. Kim, K., Mishra, V., and Hong, S., 'The rapid and continuous monitoring of gaseous elemental mercury(GEM) behavior in ambient air,' Atmos. Environ., 40, 3281-3293(2006) https://doi.org/10.1016/j.atmosenv.2006.01.046
  19. 김범철, 박주현, 허우명, 임병진, 황길순, 최광순, 최종수, '국내 주요 호수의 육수학적 조사 (4)-주암호,' Korean J. Limnol., 34(1), 30-44(2001)
  20. Keeler, G. and Landis, M., Standard Operating Procedure for Sampling of Mercury in Precipitation, US EPA(1994b)
  21. Mason, R. B. and Sullivan, K. A., Standard Operating Procedure for Site Selection and Sampling for Mercury in Lakewater, US EPA(1996)
  22. Lindberg, S. E., Vette, A. F., Miles, C., and Schaedlich, F., 'Mercury speciation in natural waters: measurement of dissolved gaseous mercury with a field analyzer,' Biogeochemistry, 48, 237-59(2000a) https://doi.org/10.1023/A:1006228612872
  23. Gerald, J., Keeler and Matthew S. Landis., Standard Operating Procedure for Analysis of Vapor Phase Mercury, US EPA(1994)
  24. 환경부, 수질오염공정시험법(2000)
  25. Yamamoto, M., 'Stimulation of elemental mercury oxidation in the presence of chloride ion in aquatic environments,' Chemosphere, 32, 1217-1224(1996) https://doi.org/10.1016/0045-6535(96)00008-2
  26. O'Driscoll, N. J., Beauchamp, S., Siciliano, S. D., Rencz, A. N., and Lean, D. R. S., 'Continuous analysis of dissolved gaseous mercury(DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: evaluating mercury flux models with quantitative data,' Environ. Sci. Technol., 37, 2226-2235(2003) https://doi.org/10.1021/es025944y
  27. Lanzillotta, E., Ceccarini, C., Ferrara, R., Dini, F., Frontini, F. P., and Banchetti, R., 'Importance of the biogenic organic matter in photo-formation of dissolved gaseous mercury in a culture of the marine diatom Chaetoceros sp,' Sci. Total. Environ., 318, 211-221(2004) https://doi.org/10.1016/S0048-9697(03)00400-5
  28. 환경부, 물환경정보시스템 http://water.nier.go.kr/weis/
  29. Dill, C., Kuiken, T., Zhang, H., and Ensor, M., 'Diurnal variation of dissolved gaseous mercury(DGM) levels in a southern reservoir lake(Tennessee, USA) in relation to solar radiation,' Sci. Total. Environ., 357, 176-193 (2006) https://doi.org/10.1016/j.scitotenv.2005.04.011