DOI QR코드

DOI QR Code

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days

황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석

  • Moon, Yun Seob (Department of Environmental Education, Korea National University of Education) ;
  • Koo, Youn Seo (Department of Environmental Energy & Engineering, Anyang University) ;
  • Jung, Ok Jin (Department of Environmental Education, Korea National University of Education)
  • 문윤섭 (한국교원대학교 환경교육과) ;
  • 구윤서 (안양대학교 환경에너지공학과) ;
  • 정옥진 (한국교원대학교 환경교육과)
  • Received : 2013.08.19
  • Accepted : 2014.01.07
  • Published : 2014.02.28

Abstract

The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

이 연구의 목적은 2008년 5월 29일 우리나라에 영향을 미치는 황사를 예측하기 위해 WRF-Chem 모델 내 에어로졸 스킴과 광물성 먼지 옵션에 따른 미세먼지 농도 변화와 그에 따른 기상장의 민감도를 분석하는 것이다. 미세먼지의 인위적 배출량에 대해서는 $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO 전구 배출량을, 광해리의 경우 Fast-J 광해리 스킴을, 그리고 황사 발생량을 추정하기 위해 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오, MOSAIC 8 섹션 에어로졸 시나리오, 그리고 GOCART 먼지 침식 시나리오를 각각 적용하였다. 그 결과 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오가 다른 시나리오들보다 우리나라 황사 먼지 농도와 배경 PM 농도를 더 높게 모사하였다. 그리고 이 시나리오와 서울의 각 대기질 측정망의 평균 PM10 농도와의 비교 결과, 상관계수는 0.67, 평균제곱근오차는 $44{\mu}gm^{-3}$으로 나타났다. 또한 WRF-Chem 모델에서 상기 3가지 시나리오와 이들 시나리오가 없는 순수 기상에서의 온도, 풍속, 경계층 높이, 장파복사의 기상 민감도를 분석한 결과, 1,800-3,000 m 경계층 높이와 $2-16ms^{-1}$ 풍속 U 성분의 공간적 분포가 황사 먼지 발생의 공간적 분포와 유사하게 나타났다. 그리고 GOCART 먼지 침식 시나리오와 RADM2 화학메커니즘 및 MADE/SORGAM 에어로졸 시나리오는 황사 먼지 또는 에어로졸과 기상이 온라인으로 상호작용함으로써 지구장파복사가 더 낮게 모사되었다.

Keywords

References

  1. Ackermann, I.J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F.S., and Shankar, U., 1998, Modal aerosol dynamics model for Europe: Development and first applications. Atmospheric Environment, 32, 2981-2999. https://doi.org/10.1016/S1352-2310(98)00006-5
  2. Ahn, B.Y. and Chun, Y., 2011, The characteristics Asian dust observed in Japan deflecting the Korean peninsula (2010. 5. 22.-5. 25.). Journal of Korean Earth Science Society, 32, 388-401. (in Korean) https://doi.org/10.5467/JKESS.2011.32.4.388
  3. Barnard, J.C., Fast, J.D., Paredes-Miranda, G., Arnott, W.P., and Laskin, A., 2010, Technical Note: Evaluation of the WRF-Chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign. Atmospheric Chemistry Physics, 10, 7325-7340, doi:10.5194/acp-10-7325-2010.
  4. Fast, J., Aiken, A.C., Allan, J., Alexander, L., Campos, T., Canagaratna, M.R., Chapman, E., DeCarlo, P.F., de Foy, B., Gaffney, J., de Gouw, J., Doran, J.C., Emmons, L., Hodzic, A., Herndon, S.C., Huey, G., Jayne, J.T., Jimenez, J.L., Kleinman, L., Kuster, W., Marley, N., Russell, L., Ochoa, C., Onasch, T.B., Pekour, M., Song, C., Ulbrich, I.M., Warneke, C., WelshBon, D., Wiedinmyer, C., Worsnop, D.R., Yu, X.Y., and Zaveri, R., 2009, Evaluating simulated primary anthropogenic and biomass burning organic aerosols during MILAGRO: Implications for assessing treatments of secondary organic aerosols. Atmospheric Chemistry Physics, 9, 6191-6215, doi:10.5194/acp-9-6191-2009.
  5. Fast, J.D., Gustafson Jr., W.I., Easter, R.C., Zaveri, R.A., Barnard, J.C., Chapman, E.G., and Grell, G.A., 2006, Evolution of ozone, particulates, and aerosol direct forcing in an urban area using a new fully-coupled meteorology, chemistry, and aerosol model. Journal of Geophysical Research, 111, D21305, doi:10.1029/2005JD006721.
  6. Flaounas, E., Coll, I., Armengaud, A., and Schmechtig, C., 2009, The representation of dust transport and missing urban sources as major issues for the simulation of PM episodes in a Mediterranean area. Atmospheric Chemistry Physics, 9, 8091-8101, doi:10.5194/acp-9-8091-2009.
  7. Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O., and Lin, S., 2001, Sources and distributions of dust aerosols simulated with the GOCART model. Journal of Geophysical Research, 106, 20225-20273. https://doi.org/10.1029/2000JD000025
  8. Gong, S.L., Zhang, X.Y., Zhao, T.L., McKendry, I.G., Jaffe, D.A., and Lu, N.M., 2003, Characterization of soil dust aerosol in China and its transport and distribution during 2001 ACE-Asia: 2. Model simulation and validation. Journal of Geophysical Research, 108, 4262, doi:10.1029/2002JD002633.
  9. Grell, G.A., Peckham, S.E., Schmitz, R., and McKeen, S.A., Frost, G., Skamarock, W.C., and Eder, B., 2005, Fully coupled “online” chemistry within the WRF model. Atmospheric Environment, 39, 6957-6976. https://doi.org/10.1016/j.atmosenv.2005.04.027
  10. Guenther, A., Zimmerman, P., and Wildermuth, M., 1994, Natural volatile organic compound emission rate estimates for US woodland landscapes. Atmospheric Environment, 28, 1197-1210. https://doi.org/10.1016/1352-2310(94)90297-6
  11. Hayasaki, M., Sugata, S., and Tanaka, H.L., 2006, Interannual variation of cold frontal activity in spring in Mongolia. Journal of Meteorological Society in Japan. 84, 463-475. https://doi.org/10.2151/jmsj.84.463
  12. Huang, X.X., Wang, T.J., Jiang, F., Liao, J.B., Cai, Y.F., Yin, C.Q., Zhu, J.L., and Han, Y., 2013, Studies on a severe dust storm in East Asia and its impact on the air quality of Nanjing, China. Aerosol and Air Quality Research, 13, 179-193.
  13. In, H.J. and Park, S.U., 2002, A simulation of long-range transport of Yellow Sand observed in April 1998 in Korea. Atmospheric Environment, 36, 4173-4187. https://doi.org/10.1016/S1352-2310(02)00361-8
  14. Kang, J.S., Yoon, S.C., Shao, Y., and Kim, S.W., 2011, Comparison of vertical dust flux by implementing three dust emission schemes in WRF/Chem. Journal of Geophysical Research, 116, D09202, 1-18.
  15. Kim, H.S. and Chung, Y.S., 2009, On the observation of sandstorms and associated episodes of airborne dustfalls in the Eastern Asian region in 2005. Journal of the Korean Earth Science Society, 30, 196-209. (in Korean) https://doi.org/10.5467/JKESS.2009.30.2.196
  16. Kurosaki, Y. and Mikami, M., 2003, Recent frequent dust events and their relation to surface wind in East Asia. Geophysical Research letters, 30, 1736. https://doi.org/10.1029/2003GL017261
  17. Lau, K.M., Kim, K.M., Sud, Y.C., and Walker, G.K., 2009, A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Annual Geophysics, 27, 4023-4037, doi:10.5194/angeo-27-4023-2009.
  18. Leung, L.R., Kuo, Y.H., and Tribbia, J., 2006, Research needs and directions of regional climate modeling using WRF and CCSM. Bulletin of American Meteorological Society, 87, 1747-1751. https://doi.org/10.1175/BAMS-87-12-1747
  19. Moon, Y.S. and Lee, S.H., 2009, Estimation of hourly emission flux of Asian dust using empirical formulas in the source area. Journal of Korean Society for Atmospheric Environment, 25, 539-549. (in Korean) https://doi.org/10.5572/KOSAE.2009.25.6.539
  20. Moon, Y.S., Lim Y.K., and Lee, K., 2011, An estimation of concentration of Asian dust using WRF-SMOKECMAQ (MADRID) during springtime in the Korean peninsula. Journal of the Korean Earth Science Society, 32, 276-293. (in Korean) https://doi.org/10.5467/JKESS.2011.32.3.276
  21. Moon, Y.S., Lim, Y.K., Hong, S., and Chang, E., 2013, Verification and estimation of the contributed concentration of CH4 emissions using the WRF-CMAQ model in Korea. Journal of the Korean Earth Science Society, 34, 209-223. (in Korean) https://doi.org/10.5467/JKESS.2013.34.3.209
  22. Qian, Y., Gustafson Jr., W.I., Leung, L.Y., and Ghan, S., 2009, Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. Journal of Geophysical Research, 114, D03108, doi:10.1029/2008JD011039.
  23. Schell, B., Ackermann, I.J., Hass, H., Ebel, A., and Binkowski, F., 2001, Modeling the formation of secondary organic aerosol within a comprehensive air quality modeling system. Journal of Geophysical Research, 106, 28275-28293. https://doi.org/10.1029/2001JD000384
  24. Shaw, W., Allwine, K.J., Fritz, B.G., Rutz, F.C., Rishel, J.P., and Chapman, E.G., 2008, An evaluation of the wind erosion module in DUSTRAN. Atmospheric Environment, 42, 1907-1921. https://doi.org/10.1016/j.atmosenv.2007.11.022
  25. Shaw, Y., 2004, Simplification of dust emission scheme and comparison with data. Journal of Geophysical Research, 109, D10202, doi:10.1029/2003JD004372.
  26. Simpson, D., Guenther, A., Hewitt, C.N., and Steinbrecher, R., 1995, Biogenic emissions in Europe. 1. Estimates and uncertainties. Journal of Geophysical Research, 100, 22875-22890. https://doi.org/10.1029/95JD02368
  27. Son, H.Y. and Kim, C.H., 2009, The spectral characteristics of climatological variables over the Asian dust source regions and its association with particle concentrations in Busan. Journal of the Korean Earth Science Society, 30, 734-743. (in Korean) https://doi.org/10.5467/JKESS.2009.30.6.734
  28. Stockwell, W., Middelton, P., and Chang, J., 1990, The second generation regional acid deposition model chemical mechanism for regional air-quality modeling. Journal of Geophysical Research, 95, 16343-16367. https://doi.org/10.1029/JD095iD10p16343
  29. Sun, J., Zhang, M., and Liu, T., 2001, Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999: Relation to source area and climate. Journal of Geophysical Research, 106, 10325-10333. https://doi.org/10.1029/2000JD900665
  30. Tegen, I. and Fung, I., 1994, Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research, 99, 22897-22914. https://doi.org/10.1029/94JD01928
  31. Teppei, J.Y. and Yamazaki, K., 2009, Impacts of Asian dust storm associated with the stratosphere-totroposphere transport in the spring of 2001 and 2002 on dust and tritium variations in Mount Wrangell ice core, Alaska. Atmospheric Environment, 43, 2582-2590. https://doi.org/10.1016/j.atmosenv.2009.02.025
  32. Wang, W. and Liu, X., 2009, Evaluating deep updraft formulation in NCAR CAM3 with high resolution WRF simulations during ARM TWP-ICE. Geophysical Research Letter, 36, L04701, doi:10.1029/2008GL036692.
  33. Wang, Z., Ueda, H., and Huang, M., 2000, A deflation module for use in modeling long-range transport of yellow sand over East Asia. Journal of Geophysical Research, 105, 26947-26959. https://doi.org/10.1029/2000JD900370
  34. Wu, J., Fu, C., Han, Z. Tang, J., Xu, Y., and Zhang, R., 2010, Simulation of the direct effects of dust aerosol on climate in East asia. Particuology, 8, 301-307. https://doi.org/10.1016/j.partic.2010.01.006
  35. Zaveri, R.A. and Peters, L.K., 1999, A new lumped structure photochemical mechanism for large-scale applications. Journal of Geophysical Research, 104, 30387-30415. https://doi.org/10.1029/1999JD900876
  36. Zaveri, R.A., Easter, R.C., Fast, J.D., and Peters, L.K., 2008, Model for simulating aerosol interactions and chemistry (MOSAIC). Journal of Geophysical Research, 113, D13204, doi:10.1029/2007JD008792.
  37. Zhang Y., Duliere, V., Mote, P.W., and Salathe Jr., E.P., 2009, Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. Journal of Climate, 22, 5511-5526, doi:10.1175/2009JCLI2875.
  38. Zhao, C., Liu, X., Leung, L.R., Johnson, B., McFarlane, S.A., Gustafson Jr., W.I., Fast, J.D., and Easter, R. 2010, The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmospheric Chemistry Physics, 10, 8821-8838, doi:10.5194/acp-10-8821-2010.

Cited by

  1. Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.639
  2. Analysis of Heavy Metal Element and Microorganism by Manufacture of Particulate Matter Sampler for Science Project of Secondary School vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.125
  3. Estimation of Chemical Speciation and Temporal Allocation Factor of VOC and PM2.5 for the Weather-Air Quality Modeling in the Seoul Metropolitan Area vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.36
  4. A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula vol.36, pp.1, 2015, https://doi.org/10.5467/JKESS.2015.36.1.90
  5. Monitoring of Microbial Contamination in Air Purifier for Preventing Cross-contamination vol.31, pp.3, 2016, https://doi.org/10.13103/JFHS.2016.31.3.201