• Title/Summary/Keyword: 대기모드

Search Result 181, Processing Time 0.02 seconds

State Transition Model-based Design of Wireless Gateway Types to Connect between a Sub-network of Things and Mobile Internet and their Performance Evaluations (사물 서브 망과 모바일 인터넷을 연계하는 무선 게이트웨이 타입들의 상태천이모델 기반 설계와 성능 평가)

  • Seong, Cheol-Je;Kim, Changhwa
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.1-14
    • /
    • 2016
  • This paper proposes four general wireless gateway types, which are distinguished by their own processing ways to connect between a wireless sub-network of things and the mobile internet that links mobile network to internet step by step. In this paper, we also design general processing procedures of these four types using the state transition model. Gateways of each types were developed on the basis of the resulted state transition models and their performances were evaluated through several tests, analyzed, and compared each other. As the results of our evaluation, compared with the other types, the type, which combines both of a low-power Sleep-interrupt way and polling ways for receiving data or responses in all the waiting states of a gateway, shows the best performance in all of data transmission real-timeliness, data loss and energy consumption.

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

A design of the high efficiency PMIC with DT-CMOS switch for portable application (DT-CMOS 스위치를 사용한 휴대기기용 고효율 전원제어부 설계)

  • Ha, Ka-San;Lee, Kang-Yoon;Ha, Jae-Hwan;Ju, Hwan-Kyu;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.208-215
    • /
    • 2009
  • The high efficiency power management IC(PMIC) with DT-CMOS(Dynamic Threshold voltage MOSFET) switching device for portable application is proposed in this paper. Because portable applications need high output voltages and low output voltage, Boost converter and Buck converter are embedded in One-chip. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. Boost converter and Buck converter, are based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 92.1% and 95%, respectively, at 100mA output current. And Step-down DC-DC converter in stand-by mode below 1mA is designed with LDO in order to achive high efficiency.

  • PDF

Low-area Dual mode DC-DC Buck Converter with IC Protection Circuit (IC 보호회로를 갖는 저면적 Dual mode DC-DC Buck Converter)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.586-592
    • /
    • 2014
  • In this paper, high efficiency power management IC(PMIC) with DT-CMOS(Dynamic threshold voltage Complementary MOSFET) switching device is presented. PMIC is controlled PWM control method in order to have high power efficiency at high current level. The DT-CMOS switch with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuit consist of a saw-tooth generator, a band-gap reference(BGR) circuit, an error amplifier, comparator circuit, compensation circuit, and control block. The saw-tooth generator is made to have 1.2MHz oscillation frequency and full range of output swing from supply voltage(3.3V) to ground. The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on current mode PWM control circuits and low on-resistance switching device, achieved the high efficiency nearly 96% at 100mA output current. And Buck converter is designed along LDO in standby mode which fewer than 1mA for high efficiency. Also, this paper proposes two protection circuit in order to ensure the reliability.

Development of Thermal Image Processing Module Using Common Image Processor (상용 이미지 처리 프로세서를 이용한 열화상 이미지 처리 모듈 개발)

  • Han, Joon Hwan;Cha, Jeong Woo;Kim, Bo Mee;Lim, Jae Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • The thermal image device support image to detect infrared light from the object without light. It can use not only defence-related industry, but also civilian industry. This paper presents a new thermal image processing module using common image processor. The proposed module shows 10~20% performance improvement with normal mode and 50% performance improvement with sleep mode compared with the previously thermal image module based FPGA. and it guarantees high scalability according to modular system. In addition, the proposed module improves modulation and reuse, so it expect to have reduction of development period, low development cost. various application. In addition, it expect to have satisfaction of customer requirements, development design, development period, release date of product.

The Design of DC-DC Converter with Green-Power Switch and DT-CMOS Error Amplifier (Green-Power 스위치와 DT-CMOS Error Amplifier를 이용한 DC-DC Converter 설계)

  • Koo, Yong-Seo;Yang, Yil-Suk;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device and DTMOS Error Amplifier is presented in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS(DT-CMOS) with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an DT-CMOS error amplifier and a comparator circuit as a block. the proposed DT-CMOS Error Amplifier has 72dB DC gain and 83.5deg phase margin. also Error Amplifier that use DTMOS more than CMOS showed power consumption decrease of about 30%. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device is achieved the high efficiency near 96% at 100mA output current. And DC-DC converter is designed with Low Drop Out regulator(LDO regulator) in stand-by mode which fewer than 1mA for high efficiency.

A Design of Three Switch Buck-Boost Converter (3개의 스위치를 이용한 벅-부스트 컨버터 설계)

  • Koo, Yong-Seo;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.14 no.2
    • /
    • pp.82-89
    • /
    • 2010
  • In this paper, a buck-boost converter using three DTMOS(Dynamic Threshold Voltage MOSFET) switching devices is presented. The efficiency of the proposed converter is higher than that of conventional buck-boost converter. DTMOS with low on-resistance is designed to decrease conduction loss. The threshold voltage of DTMOS drops as the gate voltage increases, resulting in a much higher current handling capability than standard MOSFET. In order to improve the power efficiency at the high current level, the proposed converter is controlled with PWM(pulse width modulation) method. The converter has maximum output current 300mA, input voltage 3.3V, output voltage from 700mV to 12V, 1.2MHz oscillation frequency, and maximum efficiency 90%. Moreover, the LDO(low drop-out) is designed to increase the converting efficiency at the standby mode below 1mA.

Statistically Analyzed Effects of Coal-Fired Power Plants in West Coast on the Surface Air Pollutants over Seoul Metropolitan Area (통계적 기법을 활용한 서해안 화력발전소 오염물질 배출에 따른 수도권 지표면 대기오염농도 영향의 분석)

  • Ju, Jaemin;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.549-560
    • /
    • 2019
  • The effects of the coal-fired power plant emissions, as the biggest point source of air pollutants, on spatiotemporal surface air pollution over the remote area are investigated in this study, based on a set of date selection and statistical technique to consider meteorological and geographical effects in the emission-concentration (source-receptor) relationship. We here proposed the sophisticated technique of data processing to separate and quantify the effects. The data technique comprises a set of data selection and statistical analysis procedure that include data selection criteria depending on meteorological conditions and statistical methods such as Kolmogorov-Zurbenko filter (K-Z filter) and empirical orthogonal function (EOF) analysis. The data selection procedure is important for filtering measurement data to consider the meteorological and geographical effects on the emission-concentration relationship. Together with meteorological data from the new high resolution ECMWF reanalysis 5 (ERA5) and the Korea Meteorological Administration automated surface observing system, air pollutant emission data from the telemonitoring system (TMS) of Dangjin and Taean power plants as well as spatio-temporal air pollutant concentrations from the air quality monitoring system are used for 4 years period of 2014-2017. Since all the data used in this study have the temporal resolution of 1 hour, the first EOF mode of spatio-temporal changes in air pollutant concentrations over the Seoul metropolitan area (SMA) due to power plant emission have been analyzed to explain over 97% of total variability under favorable meteorological conditions. It is concluded that SO2, NO2, and PM10 concentrations over the SMA would be decreased by 0.468, 1.050 ppb, and 2.045 ㎍ m-3 respectively if SO2, NO2, and TSP emissions from Dangjin power plant were reduced by 10%. In the same way, the 10% emission reduction in Taean power plant emissions would cause SO2, NO2, and PM10 decreased by 0.284, 0.842 ppb, and 1.230 ㎍ m-3 over the SMA respectively. Emissions from Dangjin power plant affect air pollution over the SMA in higher amount, but with lower R value, than those of Taean under the same meteorological condition.

Development of Unfolding Radial Velocity Algorithm for Dual PRF Mode of Yong-In Testbed(YIT) Radar (용인테스트베드레이다를 이용한 Dual PRF 모드의 시선속도 접힘 풀기 알고리즘 개발)

  • Kim, Hye-Ri;Suk, Mi-Kyung;Nam, Kyung-Yeub;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.521-530
    • /
    • 2016
  • Weather radar is observation equipment that transmits electromagnetic waves and receives backscattered signals from the targets. The weather radar systems of the Korea Meteorological Administration have a doppler mode that can extract the target's radial velocity. However, the radial velocity over the maximum unambiguous velocity(${\nu}_m$) for which is in a trade-off relationship with the maximum unambiguous range is folded. Therefore, a dual PRF mode of which transmits and receives signals using two different PRFs(high and low) must be used to extend the vm while maintaining the maximum unambiguous range. Using a dual PRF mode, vm can be extended to the amount of lowest common denominator of two observed vm from high and low PRF. For this extension, we have developed a velocity unfolding algorithm of which uses several criteria for classification considering observed velocity differences between high and low PRF and their error boundary. Then, correction factors are calculated for each class and are applied to unfold radial velocity. The developed algorithm was applied to the Yong-In Testbed(YIT) radar and the generated better performance of radial velocity extraction than those of the previous system.

Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway (홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안)

  • Yang, Hyeon;Yu, Gil-Sang;Kim, Yong-Woon;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.69-76
    • /
    • 2012
  • This paper proposes an efficient power consumption scheme using sleep mode in home gateway. The scheme by this paper classifies incoming real time packet and non-real time packet in home gateway and delay non-real time packet. Therefore, the home gateway can have longer sleep time because non-real time packet can get additional delay time by proposing mechanism using timer. We use non-preemptive two priority queueing model for performance analysis. As a results, we verify that power consumption of proposed scheme is reduced more than existing scheme by delay of non-real time traffic.