• Title/Summary/Keyword: 대구경 말뚝

Search Result 91, Processing Time 0.024 seconds

Case Studies of Several Load Tests for Large Diameter Battered Steel Pipe Piles Constructed on the Offshore Area. (대구경 해상 강관말뚝의 설계지지력 확인을 위한 여러 가지 재하시험의 적용)

  • 이정학;서덕동;정헌주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.291-298
    • /
    • 2001
  • It is very difficult to accomplish load tests of piles with large diameter constructed on the offshore area, because of requirement for large scaled loading equipment and bad testing conditions. Therefore, so far in many cases pile driving dynamic formulas have applied to quality control, and recently dynamic load test method is widely used for confirming bearing capacities of such piles. However, in cases of piles with very large diameter about 2,500mm, it is nearly impossible for regular type load test methods of piles such as static and dynamic to apply owing to very large design load. This is case studies of load tests such as modified static and dynamic load tests of piles and point load tests of rock samples for estimating rational allowable bearing capacity of very large diameter piles constructed on the marine area.

  • PDF

Investigation of Shear Design Expressions of Large-Diameter Concrete-Filled Steel Tubes(CFT) (대구경 콘크리트 충전형 합성기둥의 전단 설계식 분석)

  • Jung, Eun Bi;Yeom, Hee Jin;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.399-410
    • /
    • 2015
  • Concrete filled steel tube(CFT) has outstanding deformation capacity and strength in comparison with reinforced concrete or steel tube. CFT drilled shaft, which is developed large shear force due to seismic load and soil liquefaction, is designed as large diameter. However, shear design equations of the current standards do not consider bond stress of CFT and it results in extremely conservative design. Currently, previous studies for improving shear equations scarcely exist and are impossible applied to large CFT drilled shafts since these studies focus on only small scale experimental research. In this study, eventually to propose improving shear equation of large diameter CFT, it is preliminary research to compare and investigate the previous studies and current standards.

Lateral Resistance Behavior Analysis of Drilled Shafts in Multi-layered Soil (다층지반에 근입된 현장타설말뚝의 수평 지지거동분석)

  • Jang, Seo-Yong;Jeong, Jae-Hoon;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • In this research, load-transfer-function method was selected, because that is widely used in geotechnical engineering among the analysis methods to verify the behavior of load-lateral displacement. Lateral loading test of field scale was conducted, this measured data was analyzed. From the analysis, the model of load-lateral displacement was suggested. The test results were studied and compared to the commercial programs, 'LPILE', which contain the load transfer functions proposed before. By analysis of measure data of load-lateral displacement that expressed to several functions, $y=ae^{bx}$ model was the simplest and applicable to the field. In that case a value converged about 1.3, b value had a tendency to converge about 0.02. From the comparison analysis between measured data and load transfer function by 'LPILE', it is examined that if the lateral load is small, calculated displacements of them show a similar value compared to measured values. Furthermore, the bigger lateral loads, the bigger calculated values compared to the measured data. If the results are compared by Matlock-Reese method and Matlock-API method, Matlock-Reese method shows result of safe side because lateral displacement is calculated greatly relatively.

Comparative Study on Soil-Structure Interaction Models for Modal Characteristics of Wind Turbine Structure (풍력 구조물의 진동 특성 분석을 위한 지반-구조물 상호작용 모델의 비교 연구)

  • Kim, Jeongsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.245-253
    • /
    • 2020
  • In this study, natural frequencies are compared using several pile-soil interaction (PSI) models to evaluate the effects of each model on resonance safety checks for a monopile type of wind turbine structure. Base spring, distributed spring, and three-dimensional brick-shell models represented the PSIs in the finite element model. To analyze the effects of the PSI models on a natural frequency, after a stiffness matrix calculation and Winkler-based beam model for base spring and distributed spring models were presented, respectively; natural frequencies from these models were investigated for monopiles with different geometries and soil properties. These results were compared with those from the brick-shell model. The results show that differences in the first natural frequency of the monopiles from each model are small when the small diameter of monopile penetrates hard soil and rock, while the distributed spring model can over-estimate the natural frequency for large monopiles installed in weak soil. Thus, an appropriate PSI model for natural frequency analyses should be adopted by considering soil conditions and structure scale.

Analysis on the Rigid Connections between the Large Diameter Drilled Shaft and the Pile Cap for the Sea-Crossing Bridges with Multiple Pile Foundations (다주식 기초 해상교량에서 대구경 현장타설말뚝과 파일캡의 강결합에 대한 분석)

  • Cho, Sung-Min;Park, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.343-358
    • /
    • 2008
  • Piles of a bridge pier are connected with a column through a pile cap(footing). Behavior of the pile foundation can be different according to the connection method between piles and the pile cap. This difference causes a change of the design method. Connection methods between pile heads and the pile cap are divided into two groups ; rigid connections and hinge connections. KHBDC(Korea Highway Bridge Design Code) has specified to use rigid connection method for the highway bridge. In the rigid connection method, maximum bending moment of a pile occurs at the pile head and this helps the pile to prevent the excessive displacement. Rigid methods are also good to improve the seismic performance. However some specifications prescribe that conservative results through investigations for both the fixed-head condition and the free-head condition should be reflected in the design. This statement may induce an over-estimated design for the bridge which have very good quality structures with casing covered drilled shafts and the PC-house contained pile cap. Because the assumption of free-head conditions (hinge connections) are unreal for the elevated pile cap system with multiple piles of the long span sea-crossing bridges. On the other hand, elastic displacement method to evaluate the pile reactions under the pile cap is not suitable for this type of bridges due to impractical assumptions. So, full modeling techniques which analyze the superstructure and the substructure simultaneously should be performed. Loads and stress state of the very large diameter drilled shaft and the pile cap for Incheon Bridge which will the longest bridge in Korea were investigated through the full modeling for rigid connection conditions.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

A Study on the Development and the Verification of a Sonar Sensor System of a Socket Roughness Measurement Device for A Lagre-diamter Drilled Shaft (대구경 현장타설말뚝의 소켓 벽면 거칠기 측정장치(SRPS)에 사용되는 소나센서부의 개발 및 검증에 관한 연구)

  • Jeon, Byeong-Han;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.87-98
    • /
    • 2012
  • A sonar sensor system of a new socket roughness profiling system (SRPS) which can measure the socket roughness of the large-diameter drilled shafts under the in-situ condition was developed and verified. In model tests, the salinity, temperature, and high-turbidity have been changed for simulating the in-situ borehole water conditions. From the test results, it was found that the sonar sensor can measure the distance within an accuracy of 1mm. Because of the wave form characteristics of sonar sensor, the relative error exists in case of the inclined and curved surface, however, the shape of specimen was confirmed relatively exactly using the developed sonar sensor. Moreover, the salinity, temperature, and high-turbidity did not affect the measured data of socket roughness.

Case Study on the Vertical Capacity of the Repaired Large Diameter Rock-Socketed Stool Pipe Pile (보수된 대구경 암반 소켈강관말뚝의 연직지지력에 관한 사례연구)

  • 최용규;김승종;김병희;이광욱;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.185-192
    • /
    • 1999
  • It had found that, as a result of cross-hole tonic logging test, concrete was not filled partially within the bottom 2.0 m of the large diameter (Ø= 2,500mm) rock socketed pile, MP20-P11(socket diameter (Ø= 2,200mm), which was a pile among piles group supporting a pier of Kwangan Grand Bridge. The pile was repaired by the combined cement grout injected through the pipes for the cross-hole sonic logging test and the bore holes for core samples. A month after the cement grouting, repairing was checked by coring and cross-hole sonic logging then 3 times of grouting and 2 times of coring were, in turns, peformed, then repairing was completed successfully. The vertical compressive capacity of the repaired large diameter socketed pile was evaluated by several formulas and software ROCKET, and was more conservative than design load (1,882 ton) of MP20-P11. It is expected that, in the case of the battered socketed piles, it could be more reasonable to analyze the behaviors of a battered pile using 3-D model. A 3-D analysis will be peformed in the future study.

  • PDF

An Interdisciplinary Study on the Scour Depth Estimation of Incheon Bridge (인천대교의 세굴심 산정을 위한 다학제적 연구)

  • Yeo, Woon-Kwang;Lee, Hoon;Kim, Jeong-Hwan;Kwak, Moon-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.562-566
    • /
    • 2006
  • 최근 들어 국내에서는 도서지방을 잇는 연육교와 해상구간을 통과하는 대형교량의 건설이 활발히 진행되면서 해상조건에서 발생하는 교량세굴에 대처하기 위한 연구의 중요성이 대두되고 있다. 그러나 아직까지 해상조건의 세굴현상을 파악하기 위한 적절한 세굴평가 기준이 제시되어 있지 않고 대부분 자연 하천교량 기준에 의해 해상교량의 세굴평가가 이루어지고 있는 실정이다. 교량에서 발생하는 세굴 현상은 교량 기초의 안정성에 치명적인 영향을 줄 수 있고 나아가서는 교량의 붕괴 원인이 될 수 있다. 또한 교량기초 지반의 지지력 부족이나 적정피복두께 결여 등의 원인으로 구조적인 문제점을 초래할 수 있다. 해상교량의 경우에는 조석에 의한 왕복류, 파 흐름의 상호작용, 점착성 지반 등 세굴에 영향을 미칠 수 있는 요인들이 복합적으로 작용하므로 교량 건설 전부터 해상조건을 반영한 다각적인 세굴검토가 요구된다. 본 연구는 강한 조석류가 작용하고 넓은 조간대를 형성하고 있는 인천대교의 세굴심을 합리적으로 산정하기 위하여 다학제적인 연구를 시도한 것이다. 본 연구에서는 해상조건의 침식유발특성을 파악하기 위한 연구로서 수치모형 및 수리모형 실험을 수행하고, 지반종류에 따른 침식저항능력을 파악하기 위한 세굴률 실험을 수행하였다. 더불어 인천대교 건설현장에 타설되어 있는 대구경 시험말뚝에 대한 실시간 세굴모니터링을 실시하여 얻은 현장관측 자료를 검증자료로 사용함으로써 종합적인 세굴검토를 통하여 다학제적이고 합리적인 해상교량의 세굴심을 평가하고자 한다.

  • PDF

A Case Study of large diameter steel pipe pile Foundation for Offshore LNG Facility (해상 LNG 인수시설 대구경 강관말뚝 시공 사례 연구)

  • You, Dae-Young;Kim, Hyung-Wook;Jang, Woo-Young;Choi, Ki-Byung;Cho, Sung-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.70-77
    • /
    • 2010
  • In this paper, a case study of drivability and bearing capacity of large diameter steel pipe piles at PTT LNG site in Thailand is introduced. The LNG facilities were designed to be founded on steel pipe pile foundations driven into the weathered rock formation overlaid by sand layers. The drivability analyses of open ended pipe piles were carried out using GRL WEAP program and the bearing capacities of the piles were estimated. Dynamic load tests were performed to evaluate end bearing resistance, and it is shown that the measured end bearing resistance is smaller than the calculated end bearing because the plugging does not develop sufficiently in case of large diameter pipe piles.

  • PDF