• Title/Summary/Keyword: 당가수분해효소

Search Result 139, Processing Time 0.023 seconds

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Studies on the Hydrolysis of Seaweed using Microorganisms and Its Application III. Isolation of Seaweed Hydrolytic Strain from Microfloras in Decayed Pine Tree (미생물을 이용한 해조류의 가수분해 및 이용 III. 부식소나무의 미생물군으로부터 해조 분해능을 갖는 균주의 분리)

  • 김해섭;최옥수;강동수;김지만;김귀식;배태진
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.289-295
    • /
    • 2003
  • This is a part of study on the hydrolysis of seaweed using microorganisms. A microflora sample obtained from a decayed pine tree was purified by pure culture of 4 times. As the result, 16 isolated strains were obtained from the microflora sample and then each strain was incubated in a liquid medium with sea tangle powder for 3 weeks. Ratios of reduced sugar to total sugar of 08A211, 08C221 and 08B121 strains were highest. Accordingly, these three strains were incubated in 3 different liquid media of sodium alginate, sea tangle powder, and sea mustard powder for 3 or 4 weeks. The ratios of reduced sugar to total sugar and cell growth were measured once a week. Cell growth and ratios of reduced sugar to total sugar was highest for 08B121 in all the liquid media.

Enzymatic Synthesis of Meth.yl Fructoside by Immobilized Invertase (고정화 전화당 효소에 의한 메틸 프룩토시드의 합성)

  • 허주형;김해성
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.313-319
    • /
    • 1993
  • Methyl fructoside was synthesized from sucrose and methanol using an immobilized invertase. The enzyme was covalently bound by glutaraldehyde on porous silica coated with polyethyleneimine to give loading capacity of 120mg of invertase per one gram of dry porous silica and effective activity of 100U per one milligram of bound invertase. Polyethyleneimine coating imparted a hydrophillic character, good activity retention and high loading capacity to the surface of porous silica as well as hydrophillic microenviroment in the vicinity of bound invertase. The immobilized enzyme was formed into an alginate-enclosed silica bead to have enough activity for methyl fructoside synthesis from aqueous methanol-sucrose solution. Using the alginate-enclosed biocatalyst the yield of methyl fructoside was obtained as high as 55.9% from aqueous 30% (v/v) methanol and 0.291mo1/l sucrose with 2U/ml activity at $25^{\circ}C$, pH 4.8.

  • PDF

Improvement of Transglycosylation Efficiency using a Glycosynthase Mutant derived from Thermoplasma acidophilum ${\alpha}$-Glucosidase (Thermoplasma acidophilum 유래 ${\alpha}$-glucosidase로 부터 생산된 glycosynthase 돌연변이 단백질의 개선된 당전이 효율)

  • Hwang, Sung-Min;Seo, Seong-Hwa;Park, In-Myoung;Choi, Kyoung-Hwa;Kim, Do-Man;Cha, Jae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2012
  • Glycosynthase is an active site nucleophile mutant enzyme, prepared from glycosidase, which is capable of synthesizing oligosaccharide derivatives without the hydrolysis of the product. Thermoacidophilic ${\alpha}$-glucosidase of Thermoplasma acidophilum (AglA) exhibits a transglycosylating activity yielding various glycosides. AglA was converted to glycosynthase by the substitution of the catalytic nucleophile Asp-408 residue into non-nucleophile glycine in order to increase its ability to synthesize various glycosides by transglycosylation. The glycosynthase mutant was purified by Ni-NTA chromatography and its glycoside-synthesizing activity was measured by using an external nucleophile, sodium formate buffer, providing maltose as a donor and p-nitrophenyl-${\alpha}$-D-glucopyranoside ($pNP{\alpha}G$) as an acceptor, respectively. In addition, $pNP{\alpha}G$ was examined for its feasibility to act as both a donor and an acceptor, and products were compared with those of the wildtype enzyme. The mutant enzyme was found to catalyze the formation of a specific product from $pNP{\alpha}G$ with a yield of 42.5% without further hydrolysis, while the wild-type enzyme produced two $pNP{\alpha}G$ products at low yields. The results demonstrate the possibility of satisfactory yields for the reactions in the presence of small amounts of acceptor, and demonstrate that the high activity of the mutant, at pHs below neutrality, was applicable in the transfer of glucose from the natural donor.

Alcohol Fermentation Characteristics of Tapioca Using Raw Starch Enzyme (생전분 분해효소를 이용한 타피오카의 알콜발효 특성)

  • Jeong, Yong-Jin;Baek, Chang-Ho;Woo, Kyoung-Jin;Woo, Seung-Mi;Lee, Oh-Seuk;Ha, Young-Duck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.3
    • /
    • pp.405-410
    • /
    • 2002
  • The optimum conditions of the alcohol fermentation with raw tapioca by simultaneous saccharification and alcohol fermentation (SSAF) were studied using raw starch enzyme. The optimum conditions for maximum alcohol production were 0.5% (w/w) of enzyme content, 250% (v/w) of added water content and 96 hr of fermentation time. The alcohol and reducing sugar contents were 11.7% and 306 mg% after 96 hr fermentation, respectively. During the fermentation pH decreased from 6.2 to 4.2 and total acidity increased from 0.11 to 0.43. Alcohol components were detected such as ethanol, methanol, iso-propanol, n-propylalcohol and iso-butylalcohol, besides acetaldehyde. We could construct raw starch fermentation conditions which was 250% (v/w) of added water content and 0.5% (w/w) of enzyme content. However, yield of raw starch alcohol fermentation was lower than that of steaming alcohol fermentation.

Angiotensin Converting Enzyme Inhibitory Activity in Peptic Hydrolysates of Cooking Discards from Anchovy Factory Ship (멸치 가공선 자숙폐액 Pepsin 가수분해물의 Angiotensin 전환효소 저해작용)

  • Ji, Cheong-Il;Lee, Ji-Hye;Park, Douck-Choun;Gu, Yeun-Suk;Kim, In-Soo;Lee, Tae-Gee;Jung, Kyoo-Jin;Park, Yeung-Ho;Kim, Seon-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.529-532
    • /
    • 2002
  • The angiotensin converting enzyme (ACE) inhibitory activity in peptic hydrolysate of raw anchovy cooking discards was 51.3% at 1 mg of protein per $100\;{\mu}L$ sample solution. While, after the treatment of pepsin for 4 h, was 65.8%. The crude peptides fractionated through Bio-gel P-2 column chromatography consisted of five fractions $({P-1}{\sim}{P-5})$ and had maximum inhibitory activity in the fraction P-2 ($IC_{50}$=0.319 mg protein/mL). The fraction P-2 was rich in aspartic acid, glutamic acid, and glycine.

반응표면분석을 이용한 음식물쓰레기의 효소학적 가수분해 조건의 최적화

  • Kim, Gyeong-Cheol;Kim, Seong-Hui;Cheon, Hwa-Yeong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.439-444
    • /
    • 2003
  • The major factors related in enzymatic hydrolysis of food waste using cellulolytic enzymes of Trichoderma harzianum FJ1 were optimized by response surface analysis. The factors largely affecting to the reducing sugar concentration and enzymatic saccharification rate of food waste such as substrate concentration ($X_1$, %), enzyme concentration ($X_2$, U/ml), and reaction time ($X_3$, hr) were employed. A quadratic polynominal expressing the reducing sugar (RS) concentration relating with the above factors was as follows : RS (g/l) = -17.80 + $5.04X_1$ + $51.37X_2$ + $1.21X_3$ - $0.11X_1\;^2$ - $38.86X_2\;^2$ - $0.03X_3\;^2$ + $1.64X_1X_2$ + $0.04X_1X_3$ - $0.70X_2X_3$ ($R^2$=0.9939). The maximum value of the reducing sugar concentration and saccharification rate were obtained in the conditions of substrate concentration of 18.2%, enzyme concentration of 0.78 U/ml, and reaction time of 19 hr, respectively. The predicated reducing sugar concentration and saccharification rate by the response surface methodology were 95.13 g/l and 47.27%, respectively.

  • PDF

Sugars in Korean and Japanese Beer - 2. Enzymatic Analysis - (한국 및 일본산 맥주의 당에 관한 연구 - 2. 효소적 분석 -)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.150-158
    • /
    • 1998
  • Limit dextrin of Korean beer(3 brands) and Japanese beer(21 brands) were separated by ethanol fractionation. Limit dextrin of Korean and Japanese beer was estimated to be 1.1%. 1H-NMR analysis revealed that the limit dextrin showed both signal of $\alpha$-1, 4- and $\alpha$-1, 6- glucosidic linkage with its estimation ratio of average 5.5:1. Limit dextrin was hydrolyzed to glucose with the yield of 57.22% by Aspergillus awamori $\alpha$-glucosidase(24.7 unit) plus human salivay $\alpha$-amylase(2.4 unit) in 100${mu}ell$ of 0.043M acetate buffer at 37$^{\circ}C$ for 5 hour. Among them, limit dextrin of Korean beer showed the highest hydrolysis rate of 76%. Small size sugars (64.8%) removed by ethanol fractionation and limit dextrin(21.4%) hydrolyzed by amylases that is digestable sugar. Non hydrolyzed limit dextrin(13.8%) by the amylases which can be a growth factor of Bifidobacterium in human intestine.

  • PDF

Effects of Feeding Enzyme-Hydrolyzed Poultry By-Product Meal on Productivity and Blood Biochemical Characteristics in Broilers (효소가수분해 도계부산물의 급여가 육계의 생산성 및 혈액 생화학적 특성에 미치는 영향)

  • Gwak, Min-Geun;Park, Hye-Sung;Kim, Bong-Ki;Park, Hee-Bok;Kim, Ji-Hyuk
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.133-142
    • /
    • 2021
  • The purpose of this study was to investigate whether enzyme-hydrolyzed poultry by-product meal (EHPBM) is more effective as a protein source than poultry by-product meal (PBM) and soybean meal (SBM) for broiler chickens. A group of 300 one-day-old broiler chicks was randomly allocated to three treatments with five replicates (20 birds/replicate) for five weeks. The treatments consisted of basal diets containing 1) SBM, 2) PBM, and 3) EHPBM. The EHPBM-fed group (1,853 g±125.60) showed the highest final body weight (P<0.05) when compared to the PBM-fed group (1,723 g±76.81) and SBM-fed group (1,545 g±62.31). The feed conversion ratio of the EHPBM treatment group (1.740±0.104) was significantly higher (P<0.05) than those of the SBM (1.653±0.056) and PBM groups (1.674±0.072). It can be speculated that the increased feed intake in the EHPBM group led to higher body weight gain and FCR. There was no significant effect of treatments on internal organ weight except for the bursa of Fabricius. Blood biochemical characteristic analysis showed that aspartate aminotransferase and alkaline phosphatase levels were higher in the EHPBM and PBM groups (P<0.05), probably due to the strained liver caused by the rapid growth of birds. In conclusion, EHPBM may partly replace conventional dietary protein sources such as soybean meal or poultry by-product meal and can be used to improve the productivity of broilers.

Studies on Hemicellulase System in Aspersillus niger - Bioconversion of Cellulosic Wastes for the Production of D-xylose - (Aspergillus niger의 Hemicellulase계 효소에 관한 연구 -생물전환공정에 의한 D-Xylose의 생산-)

  • Moon Hi. Han;Park, Yang-Do;Park, Myung-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 1983
  • Systematic bioconversion process for the production of xylose from agricultural wastes such as barley straw and corn cobs was studied. After the pretreatment in 1 % NaOH solution for 24 hours at 3$0^{\circ}C$, enzymatic hydrolysis of barley straw for 48 hours at 3$0^{\circ}C$ resulted in the liberation of 15.8% of reducing sugar which is equivalent to 87% of total D-xylose content. Among various agricultural wastes, corn cob as well as barley straw was demonstrated to be potent sources for the production of D-xylose by the process of enzymatic conversion.

  • PDF