Browse > Article
http://dx.doi.org/10.4014/kjmb.1202.02006

Improvement of Transglycosylation Efficiency using a Glycosynthase Mutant derived from Thermoplasma acidophilum ${\alpha}$-Glucosidase  

Hwang, Sung-Min (Department of Microbiology, College of Natural Sciences, Pusan National University)
Seo, Seong-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University)
Park, In-Myoung (Department of Microbiology, College of Natural Sciences, Pusan National University)
Choi, Kyoung-Hwa (Department of Microbiology, College of Natural Sciences, Pusan National University)
Kim, Do-Man (School of Biological Sciences and Technology & The Research Institute for Catalysis, Chonnam National University)
Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.2, 2012 , pp. 104-110 More about this Journal
Abstract
Glycosynthase is an active site nucleophile mutant enzyme, prepared from glycosidase, which is capable of synthesizing oligosaccharide derivatives without the hydrolysis of the product. Thermoacidophilic ${\alpha}$-glucosidase of Thermoplasma acidophilum (AglA) exhibits a transglycosylating activity yielding various glycosides. AglA was converted to glycosynthase by the substitution of the catalytic nucleophile Asp-408 residue into non-nucleophile glycine in order to increase its ability to synthesize various glycosides by transglycosylation. The glycosynthase mutant was purified by Ni-NTA chromatography and its glycoside-synthesizing activity was measured by using an external nucleophile, sodium formate buffer, providing maltose as a donor and p-nitrophenyl-${\alpha}$-D-glucopyranoside ($pNP{\alpha}G$) as an acceptor, respectively. In addition, $pNP{\alpha}G$ was examined for its feasibility to act as both a donor and an acceptor, and products were compared with those of the wildtype enzyme. The mutant enzyme was found to catalyze the formation of a specific product from $pNP{\alpha}G$ with a yield of 42.5% without further hydrolysis, while the wild-type enzyme produced two $pNP{\alpha}G$ products at low yields. The results demonstrate the possibility of satisfactory yields for the reactions in the presence of small amounts of acceptor, and demonstrate that the high activity of the mutant, at pHs below neutrality, was applicable in the transfer of glucose from the natural donor.
Keywords
${\alpha}$-glucosidase; external nucleophile; glycosynthase; hyperthermophiles; Thermoplasma acidophilum; transglycosylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
2 Crout, D. H. C., P. Critchley, D. Muller, M. Scigelova, S. Singh, and G. Vic. 1999. Recent Advances in Carbohydrate Bioengineering, pp. 15-23. In H.J. Gilbert, G.J. Davies, B. Henrissat, B. Svensson (Eds.), The Royal Society of Chemistry, Cambridge.
3 Kato, N., S. Suyama, M. Shirokane, M. Kato, T. Kobayashi, and N. Tsukagoshi. 2002. Novel $\alpha$-glucosidase from Aspergillus nidulans with strong transglycosylation activity. Appl. Environ. Microbiol. 68: 1250-1256.   DOI
4 Kimura, A., A. Somoto, H. Mori, O. Sakai, H. Matsui, and S. Chiba. 1997. Identification of essential ionizable groups in active site of Aspergillus niger $\alpha$-glucosidase. Biosci. Biotechnol. Biochem. 61: 475-479.   DOI
5 Kurimoto, M., T. Nishimoto, T. Nakada, H. Chaen, S. Fukuda, and Y. Tsujisaka. 1997. Synthesis by an $\alpha$-glucosidase of glycosyl-trehaloses with an isomaltosyl residue. Biosci. Biotechnol. Biochem. 61: 699-703.   DOI
6 Lee, S. S., S. He, and S. G. Withers. 2001. Identification of the catalytic nucleophile of the Family 31 $\alpha$-glucosidase from Aspergillus niger via trapping of a 5-fluoroglycosylenzyme intermediate. Biochem. J. 359: 381-386.
7 Mackenzie, L. F., Q. Wang, R. A. J. Warren, and S. G. Withers. 1998. Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J. Am. Chem. Soc. 120: 5583-5584.   DOI
8 Moracci, M., A. Trincone, G. Perugino, M. Ciaramella, and M. Rossi. 1998. Restoration of the activity of active-site mutants of the hyperthermophilic $\beta$-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles. Biochemistry 37:17262-17270.   DOI
9 Moracci, M., A. Trincone, and M. Rossi. 2001. Glycosynthases: new enzymes for oligosaccharide synthesis. J. Mol. Catal. B Enzym. 11: 155-163.   DOI
10 Nakakuki, T. 2005. Present status and future prospects of functional oligosaccharide development in Japan. J. Appl. Glycosci. 52: 267-271.   DOI
11 Nakao, M., T. Nakayama, M. Harada, A. Kakudo, H. Ikemoto, S. Kobayashi, and Y. Shibano. 1994. Purification and characterization of a Bacillus sp. SAM1606 thermostable $\alpha$-glucosidase with transglucosylation activity. Appl. Microbiol. Biotechnol. 41: 337-343.   DOI
12 Nashiru, O., S. Koh, S.-Y. Lee, and D.-S. Lee. 2001. Novel $\alpha$-glucosidase from extreme thermophile Thermus caldophilus GK24. J. Biochem. Mol. Biol. 34: 347-354.
13 Noguchi, A., M. Yano, Y. Ohshima, H. Hemmi, M. Inohara-Ochiai, M. Okada, K. S. Min, T. Nakayama, and T. Nishino. 2003. Deciphering the molecular basis of the broad substrate specificity of $\alpha$-glucosidase from Bacillus sp. SAM1606. J. Biochem. 134: 543-550.   DOI
14 Okuyama, M., H. Mori, K. Watanabe, A. Kimura, and S. Chiba. 2002. Alpha-glucosidase mutant catalyzes "alphaglycosynthase"- type reaction. Biosci. Biotech. Biochem. 66: 928-933.   DOI
15 Park, T.-H., K.-W. Choi, C.-S. Park, S.-B. Lee, H.-Y. Kang, K.-J. Shon, J.-S. Park, and J. Cha. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable $\beta$-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. $\beta$-icrobiol. Biotechnol. 69: 411-422.   DOI
16 Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202.   DOI
17 Perugino, G., A. Trincone, A. Giordano, J. van der Oost, T. Kaper, M. Rossi, and M. Moracci. 2003. Activity of hyper-thermophilic glycosynthases is significantly enhanced at acidic pH. Biochemistry 42: 8484-8493.   DOI
18 Perugino, G., A. Trincone, M. Rossi, and M. Moracci. 2004. Oligosaccharide synthesis by glycosynthases. Trends Biotechnol. 22: 31-37.   DOI
19 Prodanovic, R., N. Milosavic, D. Sladic, M. Zlatovic, B. Bozic, T. Velickovic, and Z. Vujcic, 2005. Transglucosylation of hydroquinone catalysed by $\alpha$-glucosidase from baker's yeast. J. Mol. Catal. B Enzym. 35: 142-146.   DOI
20 Scigelova, M. and D. H. G. Crout. 2000. Purification of $\alpha$-galactosidase from Aspergillus niger for application in the synthesis of complex oligosaccharides. J. Mol. Catal. B Enzym. 8: 175-181.   DOI
21 Seo, S.-H., K. H. Choi, S. Hwang, J. Kim, C. S. Park, J. R. Rho, and J. Cha. 2011. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum $\alpha$-glucosidase and its transglycosylation reaction with arbutin. J. Mol. Catal. B Enzym. 72: 305-312.   DOI
22 Trincone, A., A. Giordano, G. Perugino, M. Rossi, and M. Moracci. 2003. Glycosynthase-catalysed syntheses at pH below neutrality. Bioorg. Med. Chem. Lett. 13: 4039-4042.   DOI
23 Williams, S. J. and S. G. Withers. 2002. Glycosynthases: mutant glycosidases for glycoside synthesis. Aust. J. Chem. 55: 3-12.   DOI
24 Zechel, D. L. and S. G. Withers. 2000. Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc. Chem. Res. 33: 11-18.