• Title/Summary/Keyword: 단순 탄소성해석방법

Search Result 18, Processing Time 0.02 seconds

A Study of New Approach on Elasto-Plastic Analysis of shell Structures (쉘구조물의 탄소성해석에 관한 새로운 해석법의 연구)

  • Kwun Taek Jin;Park Kang Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 1987
  • 연속체의 해석에 있어서, 특별한 경우를 제외하고는, 구조물의 개략적인 거동을 파악해야 될 경우가 종종 있다. 이러한 요구에 부응하기 위해서 강체요소법(Rigid Element Method)이라 불리우는 새로운 해석법이 개발되었다. 강체요소법은 원래 평정연구실에서 벽식프리캐스트 철근콘크리트 구조물의 탄소성해석을 하기 위해서 개발된 해석법에 착안하여, 내수벽과 같은 연속체에 적용함으로서 시작된 수치해석법이다. 그 후 저자들은 도통쉘, 구형쉘 혹은 이들이 조합된 쉘구조물에 적용할 수 있도록 개발 확장하였다. 강체요소법의 기본개념은 연속체의 분해된 각 요소를 강체(rigid body)라고 가정하고, 각 요소들은 요소의 강성으로 치환된 가상스프링으로 서로 연결되어 있다고 가정하여, 이 가상스프링의 거동을 평가함으로서 전체구조물의 거동을 파악하는 해석법이다. 이때 요소의 주변에 취해진 스프링은 해석을 단순화하기 위해서 축력, 면내전단력 및 면외전단력만을 전달한다고 가정하고, 요소의 강체변위(자유도)는 요소내의 임의의 한 점에서 취하며, 이 점에서의 강체변위(rigid displacements)는 요소의 주변에 취해진 스프링을 통하여 다른 요소로 전달된다. 상기와 같은 강체요소법의 개념을 연속체의 탄성 및 탄소성해석에 적용하면, 해석적 개념이 단순할 뿐만 아니라 구조물 전체의 자유도수를 대폭 줄여 컴퓨터 계산시간을 절약할 수 있는 잇점이 있고, 거시적인 모델(macroscopic modeling)과 미시적인 모델 (microscopic modeling)의 중간적인 성격을 가지기 때문에 구조물의 파괴상황에 대해서도 그 개략을 파악할 수 있다. 본 논문에서는 강체요소법을 보다 일반화된 해석법으로 개발, 확장하기 위해서 종전에 단층스프링시스템(single-layer spring system)으로 해석이 어려웠던 문제점들을 보완한 복층프링시스템(double-layer spring system)을 사용함으로서 휨, 비틀림의 효과를 파악할 수 있는 이론적 개념을 적용한 새로운 구요소, 원통요소 및 평면요소를 개발하고, 이러한 강체요소들의 적합매트릭스의 유도 및 해석저긴 방법을 정식화하였다. 또 휨, 비틀림 및 전단력의 효과를 고려한 사각형원통요소 및 능형원 통요소를 이용하여 원통쉘의 탄성 및 탄소성해석할 수 있는 프로그램을 개발하고, 이 프로그램으로 캔틸레버로된 연속형철근콘크리트 원통쉘의 탄성 및 탄소성해석에 적용하여 구조물의 거동에 관한 수치해석의 결과, 즉 내력의 분포, 균열의 진전, 파괴의 상황 및 변형의 상태 등을 파악해 보았다.

  • PDF

Analytical Method for Elastoplastic Behavior of Truss element under Cyclic Axial Loading (반복 축 하중을 받는 트러스 요소의 탄소성 좌굴거동 해석기법에 관한 연구)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.377-387
    • /
    • 2008
  • The post-buckling behavior of slender members, such as the chord of truss structures generally implies extreme strength degradation. The buckling strength is usually determined as the performance of the compressed steel members, so it is important to understand the exact buckling behavior of a member in order to design the entire structure. A target analytical model is usually divided by beam or shell element when we simulate the buckling behavior of a compressed steel member such as atruss member. In this case, it is possible to accurately obtain the behavior, but such would be expensive and would require experience inanalysis even in monotonic loading. In this paper, we propose a consistent and convenient method to analyze the post-buckling behavior of elastoplastic compression members. The present methods are formulated to satisfy the second law of thermodynamics. Three numerical examples were tested to determine the validity of the proposed model in cyclic loading with comparable F.E.M results.

Probabilistic Calibration of Computer Model and Application to Reliability Analysis of Elasto-Plastic Insertion Problem (컴퓨터모델의 확률적 보정 및 탄소성 압착문제의 신뢰도분석 응용)

  • Yoo, Min Young;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1133-1140
    • /
    • 2013
  • A computer model is a useful tool that provides solution via physical modeling instead of expensive testing. In reality, however, it often does not agree with the experimental data owing to simplifying assumption and unknown or uncertain input parameters. In this study, a Bayesian approach is proposed to calibrate the computer model in a probabilistic manner using the measured data. The elasto-plastic analysis of a pyrotechnically actuated device (PAD) is employed to demonstrate this approach, which is a component that delivers high power in remote environments by the combustion of a self-contained energy source. A simple mathematical model that quickly evaluates the performance is developed. Unknown input parameters are calibrated conditional on the experimental data using the Markov Chain Monte Carlo algorithm, which is a modern computational statistics method. Finally, the results are applied to determine the reliability of the PAD.

Post-buckling Behaviour of Aluminium Alloys Rectangular Plate Considering the Initial Deflection Effect (초기 처짐 영향을 고려한 알루미늄 합금 사각형 판의 좌굴 후 거동)

  • Oh, Young-Cheol;Kang, Byoung-Mo;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.738-745
    • /
    • 2014
  • In this paper, It is performing to the elastic and elasto-plastic large deformation series analysis using a numerical method for the initial deflection effect of the aluminum alloy rectangular plate in the elasto-plastic loading area patch loading size. It is assumed a boundary condition to be a simply supported condition and consider the initial deflection amplitude, aspect ratio. It examined the critical elastic buckling load and post-buckling behaviour of aluminium alloy A6082-T6 rectangular plate. It used a commercial program for the elastic and elasto-plastic deformation series analysis. If the initial deflection amplitude is smaller, the in-plane rigidity with increasing to load is reduced from the start and occurs significantly more increasing the amplitude. More higher the aspect ratio, the initial yield strength is gradually decreased, and the plate thickness thicker and occurs larger than the thin walled plate a reduction ratio of the initial yield strength of the patch loading size as 0.5.

Two Dimensional Elasto-plastic Stress Analysis by the B.E.M. (경계요소법에 의한 2차원 탄소성응력해석)

  • 조희찬;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.621-629
    • /
    • 1992
  • This study is concerned with an application of the Boundary Element Method to 2-dimensional elastoplastic stress analysis on the material nonlinearities. The boundary integral formulation adopted an initial stress equation in the inelastic term. In order to determine the initial stress increment, the increment of initial elastic strain energy due to elastic increment in stressstrain curve was used as the convergence criterion during iterative process. For the validity of this procedure, the results of B.E.M. with constant elements and NISA with linear elements where compared on the thin plate with 2 edge v-notches under static tension and the thick cylinder under internal pressure. And this paper compared the results of using unmedical integral with the results of using semi-analytical integral on the plastic domain integral.

p-Version Elasto-Plastic Finite Element Analysis by Incremental Theory of Plasticity (증분소성이론에 의한 p-Version 탄소성 유한요소해석)

  • 정우성;홍종현;우광성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.217-228
    • /
    • 1997
  • The high precision analysis by the p-version of the finite element method are fairly well established as highly efficient method for linear elastic problems, especially in the presence of stress singularity. It has been noted that the merits of the p-version are accuracy, modeling simplicity, robustness, and savings in user's and CPU time. However, little has been done to exploit their benefits in elasto-plastic analysis. In this paper, the p-version finite element model is proposed for the materially nonlinear analysis that is based on the incremental theory of plasticity using the constitutive equation for work-hardening materials, and the associated flow rule. To obtain the solution of nonlinear equation, the Newton-Raphson method and initial stiffness method, etc are used. Several numerical examples are tested with the help of the square plates with cutout, the thick-walled cylinder under internal pressure, and the circular plate with uniformly distributed load. Those results are compared with the theoretical solutions and the numerical solutions of ADINA

  • PDF

Elasto-plastic Anisotropic Wood Material Model for Finite Solid Element Applications (탄소성이방성 솔리드 유한요소법 활용을 위한 목재 재료 모델 생성 연구)

  • Hong, Jung-Pyo;Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.367-375
    • /
    • 2014
  • A simplified material model, which was efficiently implemented in a three-dimensional finite solid element (3D FE) analysis for wood was developed. The bi-linear elasto-plastic anisotropic material theory was adopted to describe constitutive relations of wood in three major directions including longitudinal, radial and tangential direction. The assumption of transverse isotropy was made to reduce the requisite 27 material constants to 6 independent constants including elastic moduli, yield stresses and Poisson's ratios in the parallel, and perpendicular to grain directions. The results of Douglas fir compression tests in the three directions were compared to the 3D FE simulation incorporated with the wood material model developed in this study. Successful agreements of the results were found in the load-deformation curves and the permanent deformations. Future works and difficulties expected in the advanced application of the model were discussed.

Calculation of J-Integral by CMOD at Impact Behavior of 3-Point Bend Specimen (삼점 굽힘 시험편의 충격 거동에 있어서의 CMOD에 의한 J-적분의 계산)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.542-546
    • /
    • 2005
  • The J-integral used as a ductile crack initiation criterion has been discussed for the impact loaded elastic-plastic 3PB specimens. The experimental method to measure or estimate the J-integral history has been investigated and its result has been compared to the obtained elastic-plastic values by the finite element model of this study. These numerical results and the experimental curves are found to agree closely. J-integral can be calculated by only numerical analysis with the finite element model. It is proved that simple calculation can be made in order to find the possible value of J-integral by crack mouth opening displacement(CMOD) in the dynamic nonlinear fracture experiment of 3-point bend(3PB) specimen. The property of elastic-plastic material is considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directly kom photographs taken during impact experiments.

  • PDF

A Comparative Study of Simplified Elastic-Plastic Analyses for Predicting Thermal Fatigue Life (Simplified Elastic-Plastic Analyses 기반 열피로 시편의 균열 개시 수명 예측 비교 연구)

  • Shin Je Park;Yun Jae Kim;Jin Weon Kim;Tae Soon Kim;Jae Yoon Jeong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2024
  • In this study, the influencing factors of the four simplified elastic-plastic analysis methods (ASME B&PV Code Sec. III NB, ASME Code Cases N-779, N-904 and JSME EPD Code Case) for thermal fatigue loading were investigated via FE analysis of a simulated specimen. As expected, the ASME B&PV Code Sec. III NB method is the most conservative, because it applies the same Ke-factor to both primary and secondary stresses. The JSME EPD Code Case predicts a fatigue life 1 to 2 times longer than the ASME Code Sec. III method, depending on the restraint condition. The Code Case N-904 predicts a fatigue life 1 to 5 times longer. Finally, the Code Case N-779 provides the greatest reduction in conservatism, with a predicted fatigue life 3 to 7 times longer than the ASME Code Sec. III method.

Prediction of Ground Settlements due to Tunneling through Granular Soils (사질토층의 터널굴착에 따른 지반침하의 예측)

  • Bae, Gyu Jin;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.143-151
    • /
    • 1989
  • An equation to predict the ground settlement caused by tunneling through granular soils is proposed, The equation is developed modifying the Murayama equation using the results of elastic finite element analysis. Ground settlements at the underground structures in Korea and other countries are analyzed. From the results of the settlement analysis, it is found that the ground settlement associated with tunneling through granular soils is not only affected by tunnel geometry but also related to volume change characteristics of soils. It is also found that the widths of shear band, t in field conditions are 2 to 6 times greater than the values proposed in the Murayama's model. Calculated settlements using the proposed equation show reasonable agreement with the observed settlements and the results from the elasto-plastic finite element analysis. Murayama equation seems to underestimate the ground settlement.

  • PDF