• Title/Summary/Keyword: 단백질칩

Search Result 58, Processing Time 0.028 seconds

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Lysozyme Crystallization in Droplet-based Microfluidic Device (액적기반 미세유체장치에서 라이소자임 결정화)

  • Ko, Kwan-Young;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.760-765
    • /
    • 2013
  • Lysozyme crystallization was performed by using flow-focusing chip in droplet-based microfluidic system. Water-in-oil droplets were formed in the system and collected on petri-dish and cross type mold. Liquid-liquid reaction of lysozyme and sodium chloride occurred in the droplet and crystals were observed through microscope. Solution pH was varied as 4.8 and 7.2. Crystals of polyhedron and plate-like shape were obtained at pH 4.8, while needle structure crystals formed at pH 7.2. Lysozyme in single droplet for two pHs were crystallized with constant or decreased droplet size. However, crystals at pH 4.8 were only obtained in the droplet of which size was increased by the interaction between droplets. Droplet volume did not change at pH 7.2 and crystals formed in both droplets.

Acrylamide Monitoring of Domestic Food Products (국내생산식품의 아크릴아마이드 함량분석)

  • Park, Jae-Young;Kim, Cheong-Tae;Kim, Hye-Young;Keum, Eun-Hee;Lee, Mi-Seon;Chung, So-Young;Sho, You-Sub;Lee, Jong-Ok;Oh, Sang-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.872-878
    • /
    • 2004
  • Food products selected based on their annual sales and international acrylamide research data were analyzed for quantitation of acrylamide. Samples including raw food, substitute meal, snack, drink, and sauce products were analyzed by LC/MS/MS methods adopted by PDA. Upon comparison, concentrations of acrylamide in these products were similar to those analyzed in other countries.

Analysis of toxicity using bio-digital contents (바이오 디지털 콘텐츠를 이용한 독성의 분석)

  • Kang, Jin-Seok
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Numerous bio-digital contents have been produced by new technology using biochip and others for analyzing early chemical-induced genes. These contents have little meaning by themselves, and so they should be modified and extracted after consideration of biological meaning. These include genomics, transcriptomics, protenomics, metabolomics, which combined into omics. Omics tools could be applied into toxicology, forming a new field of toxicogenomics. It is possible that approach of toxicogenomics can estimate toxicity more quickly and accurately by analyzing gene/protein/metabolite profiles. These approaches should help not only to discover highly sensitive and predictive biomarkers but also to understand molecular mechanism(s) of toxicity, based on the development of analysing technology. Furthermore, it is important that bio-digital contents should be obtained from specific cells having biological events more than from whole cells. Taken together, many bio-digital contents should be analyzed by careful calculating algorism under well-designed experimental protocols, network analysis using computational algorism and related profound databases.

Biochip System for Environmental Monitoring using Nanobio Technology (나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템)

  • Kim, Young-Kee;Min, Jun-Hong;Oh, Byung-Keun;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.378-386
    • /
    • 2007
  • Bio-sensing devices, which are basically integrated and miniaturized assay systems consisted of bioreceptor and signal transducer, are advantageous in several ways. In addition to their high sensitivity, selectivity, simplicity, multi-detection capability, and real time detection abilities, they are both very small and require relatively inexpensive equipments. Two core technologies are required to develop bio-sensing devices; the fabrication of biological receptor module (both of receptor development and immobilisation of them) and the development of signal transducing instruments containing signal generation technique. Various biological receptors, such as enzymes, DNA/RNA, protein, and cell were tried to develop bio-sensing devices. And, the signal transducing instruments have also been extensively studied, especially with regard to electrochemical, optical, and mass sensitive transducers. This article addresses bio-sensing devices that have been developed in the past few years, and also discusses possible future major trends in these devices.

Microscopic Observation of Pellets Fabricated with Torrefied Larch and Tulip Tree Chips and Effect of Binders on the Durability of the Pellets (반탄화 낙엽송 및 백합나무 칩으로 제조한 펠릿의 현미경 관찰과 펠릿의 내구성에 대한 바인더의 영향)

  • Park, Dae-Hak;Ahn, Byung Jun;Kim, Sang Tae;Lee, Jae-Won;Han, Gyu-Seong;Yang, In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.224-230
    • /
    • 2015
  • This study was conducted to investigate the effects of several variables on the durability of wood pellets fabricated with torrefied larch (LAR) and tulip tree (TUT) chips. Microscopic observation by scanning electron microscope-energy dispersive X-ray spectrometer was also performed to identify the surface of the wood pellets visually. In addition, torrefied-LAR and TUT pellets were fabricated with the addition of moisture, lignin, starch and protein as binders, and durabilities of the pellets were analyzed statistically. Durabilities of torrefied-LAR and TUT pellets were lower than one of non-torrefied-LAR and TUT pellets. Durabilities of both pellets fabricated with the wood chips, which were torrefied with $230^{\circ}C$ and 30 min, were the highest among all torrefaction conditions used in this study. From the microscopic observations, lignin was distributed broadly on the surface of non-torrefied wood pellets, whereas congregated partially on the surface of torrefied wood pellets. Durability of LAR pellets increased with the addition of moisture, but that of TUT pellets was reduced. Addition of binders contributed to increase the durability of LAR and TUT pellets. As a binder, lignin and protein were more effective than starch for improving the durability. In conclusion, mild torrefaction treatment, such as $230^{\circ}C$ and 30 min, might be an optimal condition to minimize the durability reduction of the LAR and TUT pellets. In addition, when torrefied woody materials with high and low specific gravities are used as a raw material for the production of durable wood pellets, it might be required to adjust moisture content and torrefaction conditions of woody materials, respectively.

Surface Modification Using Spiropyran-Derivative and Its Analysis of Surface Potential Induced by UV (스파이로파이란에 의한 표면 개질 및 자외선에 의해 유도된 표면 전위에 대한 분석)

  • Lee, Bong-Soo;Han, Dong-Keun;Son, Tae-Il;Jung, Young-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.478-485
    • /
    • 2011
  • Merocyanine derivatives transformed from spiropyran-containing compounds by irradiating the light of ultraviolet (UV) include zwitterion of phenolate anion and amine cation. Complexation of this phenolate anion on merocyaninemodified surface and Ni ion among metal ions led to a change of surface charge and it was measured with kelvin prove force microscopy (KFM). We found that the resultant surface potential decreased linearly as UV-exposed time increased, and finally were saturated. Also it was analyzed through XPS the immobilized amount of Ni ions was increased according to increase of UV-exposed time. It is considered that these properties could be applied for detection and a quantitative control of different metal ions. Further research is to aim construct specific scaffold/matrix which enable high selective, high sensitive and, especially, a quantitative immobilization of metal ions-binding biomaterials such as proteins and cells.

Difference in Protein Markers According to the Survival of Sepsis Patients using Protein Chips (패혈증 생존 및 사망 환자 혈장에서 단백질 칩을 이용한 분석의 차이)

  • Park, Myoung Ok;Lee, Heui Young;Son, Hee Jung;Sung, Ji Hyun;Lee, Seung Joon;Lee, Sung Joon;Ha, Kwon Soo;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • Background; Several clinical scoring systems are currently being used to predict the outcome of sepsis, but they all have certain limitations. Therefore, we sought to identify the proteomic biomarkers, with wsing proteomic tools, that differed according to the outcome of sepsis patients. Methods; Upon admission to the ICU, blood samples were obtained from the 16 patients with sepsis who were enrolled in this study. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI -TOF MS) was used to identify the markers that could predict the outcome of sepsis. Results; We found six peaks, by using cation and anion chips, that statistically differed between those patients who died and those who survived. Conclusion; The biomarkers we found by using proteomic tools may help predict the prognosis and also plan the treatment of sepsis.