본 논문에서는 GNU 컴파일러를 이용하여 ES-C2340 DSP2 프로세서를 위한 C 교차 컴파일러를 개발한다. 신속하고 효율적인 컴파일러의 개발을 위해 언어 의존적인 프 론트 앤드(front-end)의 일부는 GNU 컴파일러를 사용하고, 프로세서 의존적인 백 앤 드(back-end)부분은 새로이 작성하여 결합하는 접근 방법을 사용한다. 이러한 접근 방법은 첫째, 프론트 앤드 부분에서 잘 검증된 GNU 컴파일러의 뛰어난 최적화 기법과 다중 언어 지원성을 사용하므로 컴파일러의 효율성과 범용성이 보장되고, 둘째, 하드 웨어 의존적인 부분의 구현에만 집중함으로써 개발 기간이 단축되며, 셋째 개발 시간 의 단축으로 인해 프로세서의 개발시에 논리 검증 도구로 고급 언어를 사용할 수 있 게 한다. 그리고 본 논문에서는 교차 컴파일러를 지원하기 위하여 텍스트 수준의 선 링커(pre-linker)도 구현한다.
강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역$(110^{\circ}E-145^{\circ}E,\;25^{\circ}N-55^{\circ}N)$의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
본 논문은 다중 센서 융합의 성능을 높이기 위해 적응형 퍼지-칼만 필터를 적용하고 교차검증법(cross-validation)으로 퍼지시스템 입 출력 소속 함수의 매개변수를 조정하는 방법을 제안한다. 적응형 퍼지-칼만 필터는 가속도의 변화량과 칼만 필터의 잔여오차를 입력으로 시스템잡음, 측정잡음을 추정하여 칼만 이득을 변화시킨다. 적용된 퍼지-칼만 필터는 잡음들을 가우시안 분포로 가정한 이전 방법과 비교하여 비선형/비가우시안 잡음에 강인한 추정 결과를 보여준다. 본 논문에서 제안한 퍼지-칼만 필터를 평가하기 위해 가속도센서/자이로센서를 융합하여 2축 자세추정시스템(Attitude Heading Reference System)을 설계하였고 무인항공기에 사용되는 자세추정센서 NAV420CA-100과 비교하여 성능을 검증하였다.
In this paper, we study on how to determine the number of hidden layer neurons in neural network for predicting defect size of steam generator tube. It was reported in the literature that the number of hidden layer neurons can be efficiently determined with the help of cross-validation. Although the cross-validation provides decent estimation performance in most cases, the performance depends on the selection of validation set and rather poor performance may be led to in some cases. In order to avoid such a problem, we propose to use multifold cross-validation. Through the simulation study, it is shown that the estimation performance of defect width (defect depth, respectively) attains 94% (99.4%, respectively) of the best performance achievable among the considered neuron numbers.
국내 영화 산업 매출은 매년 증가하고 있다. 극장은 영화의 1차 판매 경로이며, 극장을 이용하는 관객 수는 부가판권에 영향을 준다. 따라서 극장을 이용하는 관객의 수는 영화 산업 매출에 직결되는 중요한 요소이다. 본 논문에서 특정일의 관객 수를 예측하기 위하여 다중선형회귀모형과 Bass 모형을 결합한 Hybrid 모형을 고려한다. 두 모형을 결합함으로써 회귀분석의 예측값을 Bass 모형의 예측값으로 보정하였다. 분석에는 개봉일이 모두 다른 세 영화를 이용하였다. All subset regression 방법을 이용해 모든 가능한 조합을 생성하고 5중 교차검증(5-fold cross validation)을 통해 5번 모형을 추정한다. 이 때 제곱근평균오차가 가장 작은 모형으로 예측값을 구한 뒤 Bass 모형의 예측값과 결합해 최종 예측값을 구하게 된다. 과거데이터가 존재할수록 Bass 모형의 가중치는 증가하면서 예측값에 보정효과를 준다는 것을 확인할 수 있었다.
자갈다짐말뚝(Gravel Compaction Pile) 공법은 연약지반 개량공법 중의 하나로 육상 및 해상에서 연약 지반을 개량하기 위해 많이 사용되어 왔다. 자갈다짐말뚝으로 보강된 지반의 극한 지지력은 자갈다짐말뚝 및 지반의 강도, 치환율, 시공조건 등에 영향을 받으며 이를 예측하기 위한 다양한 예측식이 제안되었다. 하지만 기존 예측식을 활용한 극한지지력 예측은 오차율 및 변동성이 매우 크며, 실제 설계에 활용하기에는 부적합한 것으로 나타났다. 본 연구에서는 자갈다짐말뚝으로 보강된 지반의 극한 지지력을 예측하기 위하여 현장 재하시험결과를 활용한 다중회귀분석을 수행하였으며, 단일잔류 교차검증에 따른 예측오차평가를 통하여 가장 효율적인 입력변수를 선정하고 이에 대한 극한 지지력 예측식을 제안하였다. 또한 선정된 입력변수를 활용하여 인공신경망 적용에 따른 극한 지지력 예측오차를 평가하고 이를 기존 예측식에 따른 결과와 비교 분석하였다.
본 연구에서는 모래다짐말뚝(sand compaction pile, SCP)과 자갈다짐말뚝(gravel compaction pile, GCP)으로 보강된 지반의 극한지지력을 예측할 수 있는 식을 제안하고자 34개의 국내외 실내재하시험 데이터를 수집하고 이를 분석하였다. 수집된 자료를 기존의 이론식에 의한 극한지지력 산정 값과 비교하여 기존 이론식의 예측 정도를 파악하였다. 또한 극한 지지력 예측식을 제안하고자 다중회귀분석을 수행하였으며, 단일잔류 교차검증에 따른 예측오차평가를 통하여 가장 효율적인 입력변수의 수 및 조합을 선정하였다. 최종적으로 SCP와 GCP의 실내재하시험에 대한 극한 지지력을 예측하기 위한 다중회귀식을 제안하였으며 그 성능을 평가하였다.
본 논문에서는 구조적 특징분석을 이용한 무제약 필기 숫자의 검증기를 개발하고 이를 다중 인식기의 결합 알고리즘으로 사용하는 방법을 제안한다.일반적인 다중 인식기 결합은 학습이나 확률적 방법을 주로 사용하고 입력 영상의 구조적 특징에 대해서는 전혀 고려하지 않기 때문에 인간이 명백히 판단할 수 있는 숫자임에도 불구하고 인식기의 특성에 따라 오인식을 할 수 있다.이런 약점을 보완하기 위하여 자주 혼동되는 숫자쌍에 대하여 구조적 특징을 비교 분석하여 판단하는 일대일 검증기를 구현하고 이를 인식기의 결합에 적용한다.검증을 위한 구조적 특징으로는 윤곽선,방향코드,다각형 근사와 수직/수평 영교차 횟수 등이 있다.제안하는 방법의 성능 평가를 위한 실험은 CENPARMI숫자 데이터를 사용하였으며, 실험 결과 전체 신뢰도는 97.95%를 얻었고 또한 일반적인 결합 알고리즘에서 발생할 수 있는 오인식 요소들이 제거됨을 확인할 수있었다.
본 연구는 KOMPSAT-3 위성의 방사학적 품질 평가를 위해 다중분광 및 초분광 센서을 사용하여 복사학적 교차 검증을 수행하였다. PICS site 에서 촬영된 EO-1 Hyperion과 Landsat-8 OLI 센서의 영상을 이용하였고, 서로 다른 특성을 지닌 토지 피복으로 구성된 2개 지역을 선정하여 항공 초분광 센서와 대기상층 반사도 기반 교차 검증을 수행하였다. EO-1 Hyperion, CASI-1500과의 대기상층 반사도를 비교한 결과, 전체적으로 약 4 % 이내의 차이를 보였다. 이는 일반적으로 타 위성과의 비교를 통한 반사도 차이가 5 % 내에 들어올 경우 방사학적 품질기준에 적합하다고 판단된다. Landsat-8 센서와의 대기상층 반사도를 비교한 결과 Blue, Green, Red밴드는 약 3% 내외의 반사도 차이를 보였으나, NIR band에서 Landsat-8에 비해 상대적으로 낮게 나타났다. 이는 NIR 밴드에서 두 센서간 밴드대역폭의차이가 존재하고, KOMPSAT-3 센서의 경우 수증기에 의한 흡수가 강하게 나타나는 940nm 부근도 밴드대역폭이 포함되고 있기 때문에 상대적으로 낮은 반사도를 보이는 것으로 판단되며, 이를 극복하기 위해 Spectral Bandwidth Adjustment Factor (SBAF)와 같은 rescale method를 적용한 보다 세밀한 분석이 시도될 필요가 있다.
화자 검증에서 화자 임베딩 구축은 중요한 이슈이다. 일반적으로, 화자 임베딩 인코딩을 위해 자기주의 메커니즘이 적용되어졌다. 이전의 연구는 마지막 풀링 계층과 같은 높은 수준의 계층에서 자기 주의를 학습시키는 데 중점을 두었다. 이 경우, 화자 임베딩 인코딩 시 낮은 수준의 계층의 영향이 감소한다는 단점이 있다. 본 연구에서는 잔차 네트워크를 사용하여 Masked Cross Self-Attentive Encoding(MCSAE)를 제안한다. 이는 높은 수준 및 낮은 수준 계층의 특징 학습에 중점을 둔다. 다중 계층 집합을 기반으로 각 잔차 계층의 출력 특징들이 MCSAE에 사용된다. MCSAE에서 교차 자기 주의 모듈에 의해 각 입력 특징의 상호 의존성이 학습된다. 또한 랜덤 마스킹 정규화 모듈은 오버 피팅 문제를 방지하기 위해 적용된다. MCSAE는 화자 정보를 나타내는 프레임의 가중치를 향상시킨다. 그런 다음 출력 특징들이 합쳐져 화자 임베딩으로 인코딩된다. 따라서 MCSAE를 사용하여 보다 유용한 화자 임베딩이 인코딩된다. 실험 결과, VoxCeleb1 평가 데이터 세트를 사용하여 2.63 %의 동일 오류율를 보였다. 이는 이전의 자기 주의 인코딩 및 다른 최신 방법들과 비교하여 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.