DOI QR코드

DOI QR Code

Radiometric Cross Validation of KOMPSAT-3 AEISS

다목적실용위성 3호 AEISS센서의 방사 특성 교차 검증

  • Shin, Dong-yoon (Department of Spatial Information Engineering, Pukyong National University) ;
  • Choi, Chul-uong (Department of Spatial Information Engineering, Pukyong National University) ;
  • Lee, Sun-gu (Ground System Development Team, Korea Aerospace Research Institute) ;
  • Ahn, Ho-yong (Department of Spatial Information Engineering, Pukyong National University)
  • 신동윤 (부경대학교 지구환경시스템과학부) ;
  • 최철웅 (부경대학교 지구환경시스템과학부) ;
  • 이선구 (한국항공우주연구원 지상시스템개발팀) ;
  • 안호용 (부경대학교 지구환경시스템과학부)
  • Received : 2016.08.10
  • Accepted : 2016.09.13
  • Published : 2016.10.31

Abstract

This study, multispectral and hyperspectral sensors were utilized to use radiometric cross validation for the purpose of radiometric quality evaluation of a 'KOMPSAT-3'. Images of EO-1 Hyperion and Landsat-8 OLI sensors taken in PICS site were used. 2 sections that have 2 different types of ground coverage respectively were selected as the site of cross validation based on aerial hyperspectral sensor and TOA Reflectance. As a result of comparison between the TOA reflectance figures of KOMPSAT-3, EO-1 Hyperion and CASI-1500, the difference was roughly 4%. It is considered that it satisfies the radiological quality standard when the difference of figure of reflectance in a comparison to the other satellites is found within 5%. The difference in Blue, Green, Red band was approximately 3% as a comparison result of TOA reflectance. However the figure was relatively low in NIR band in a comparison to Landsat-8. It is thought that the relatively low reflectance is because there is a difference of band passes in NIR band of 2 sensors and in a case of KOMPSAT-3 sensor, a section of 940nm, which shows the strong absorption through water vapor, is included in band pass resulting in comparatively low reflectance. To overcome these conditions, more detailed analysis with the application of rescale method as Spectral Bandwidth Adjustment Factor (SBAF) is required.

본 연구는 KOMPSAT-3 위성의 방사학적 품질 평가를 위해 다중분광 및 초분광 센서을 사용하여 복사학적 교차 검증을 수행하였다. PICS site 에서 촬영된 EO-1 Hyperion과 Landsat-8 OLI 센서의 영상을 이용하였고, 서로 다른 특성을 지닌 토지 피복으로 구성된 2개 지역을 선정하여 항공 초분광 센서와 대기상층 반사도 기반 교차 검증을 수행하였다. EO-1 Hyperion, CASI-1500과의 대기상층 반사도를 비교한 결과, 전체적으로 약 4 % 이내의 차이를 보였다. 이는 일반적으로 타 위성과의 비교를 통한 반사도 차이가 5 % 내에 들어올 경우 방사학적 품질기준에 적합하다고 판단된다. Landsat-8 센서와의 대기상층 반사도를 비교한 결과 Blue, Green, Red밴드는 약 3% 내외의 반사도 차이를 보였으나, NIR band에서 Landsat-8에 비해 상대적으로 낮게 나타났다. 이는 NIR 밴드에서 두 센서간 밴드대역폭의차이가 존재하고, KOMPSAT-3 센서의 경우 수증기에 의한 흡수가 강하게 나타나는 940nm 부근도 밴드대역폭이 포함되고 있기 때문에 상대적으로 낮은 반사도를 보이는 것으로 판단되며, 이를 극복하기 위해 Spectral Bandwidth Adjustment Factor (SBAF)와 같은 rescale method를 적용한 보다 세밀한 분석이 시도될 필요가 있다.

Keywords

References

  1. Barry, P.S., J. Mendenhall, P. Jarecke, M. Folkman, J. Pearlman, and B. Markham, 2002. EO-1 Hyperion hyperspectral aggregation and comparison with EO-1 Advanced Land Imager and Landsat 7 ETM+, Proc. of 2002 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toronto, Canada, Jun. 24-28, vol. 3, pp. 1648-1651.
  2. Bian, L.(Ed.), 1997. Multiscale nature of spatial data in scaling up environmental models. Lewis Publishers, Boca Raton, 13-26.
  3. Chi, J.H, 2013. Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery, Korean Journal of Remote Sensing, 29(4): 399-406 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.4.5
  4. Dinguirard, M., and P.N. Slater, 1999. Calibration of space-multispectral imaging sensors: A review, Remote Sensing of Environment, 68(3): 194-205. https://doi.org/10.1016/S0034-4257(98)00111-4
  5. Hearn, D.R., C.J. Digenis, D.E. Lencioni, J.A. Mendenhall, J.B. Evans, and R.D. Welsh, 2001. EO-1 Advanced Land Imager overview and spatial performance, Proc. of 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Jul. 9-13, vol. 2, pp. 897-900.
  6. Jarecke, P., P. Barry, J. Pearlman, and B. Markham, 2001. Aggregation of Hyperion hyperspectral spectral bands into Landsat-7 ETM+ spectral bands, Proc. of 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Jul. 9-13, vol. 6, pp. 2822-2824.
  7. Kim, J.G., B.J. Sohn, E.S. Chung, H.W. Chun, A.S. Suh, K.L. Kim, and M.L. Oh, 2008. Simulation of TOA visible radiance for the ocean target and its possible use for satellite sensor calibration, Korean Journal of Remote Sensing, 24(6): 535-549 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2008.24.6.535
  8. Kim, W.K. and S.H. Lee, 2013. Study on Radiometric Variability of the Sonoran Desert for Vicarious Calibration of Satellite Sensors. Korean Journal of Remote Sensing, 29(2): 209-218 (In Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.5
  9. Lee, K.S., S.M. Park, S.H. Kim, H.S. Lee and J.I. Shin, 2012. Radiometric characteristics of Geostationary Ocean Color Imager (GOCI) for land applications, Korean Journal of Remote Sensing, 28(3): 277-285. https://doi.org/10.7780/kjrs.2012.28.3.277
  10. Pagutti, M., R.E. Ryan, M. Kelly, K. Holekamp, V. Zanoni, K. Thome, and S. Schiller, 2003. Radiometric characterization of IKONOS multispectral imagery, Remote Sensing of Environment, 88(1): 53-69. https://doi.org/10.1016/j.rse.2003.07.008
  11. Pahlevan, N., and J.R. Schott, 2013. Leveraging EO-1 to Evaluate Capability of New Generation of Landsat Sensors for Coastal/Inland Water Studies, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2): 360-374. https://doi.org/10.1109/JSTARS.2012.2235174
  12. Pearlman, J., S. Carman, C. Segal, P. Jarecke, P. Clancy, and W. Browne, 2001. Overview of the Hyperion imaging spectrometer for the NASA EO-1 mission, Proc. of , 2001 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, NSW, Jul. 9-13, vol. 2, pp. 3036-3038.
  13. Sohn, B.J, S.J. Yoo, Y.S. Kim, and D.H. Kim, 2000. Examining a vicarious calibration method for the TOA radiance initialization of KOMPSAT OSMI, Korean Journal of Remote Sensing, 16(4): 305-313. https://doi.org/10.7780/kjrs.2000.16.4.305
  14. Sun, L., X. Hu, M. Guo, and N. Xu, 2012. Multisite calibration tracking for FY-3A MERSI solar bands, IEEE Transactions on Geoscience and Remote Sensing, 50(12): 4929-4942. https://doi.org/10.1109/TGRS.2012.2215613
  15. Teillet, P.M., J.L. Barker, B.L. Markham, R.R. Irish, G. Fedosejevs, and J.C. Storey, 2001. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets, Remote Sensing of Environment, 78(1): 39-54. https://doi.org/10.1016/S0034-4257(01)00248-6
  16. Teillet, P.M., Gedosejevs, G., Gauthier, R.P., O'Neill, N.T., Thome, K.J., Biggar, S.F., Ripley, H., Meygret, A., 2001. A generalized approach to the vicarious calibration of multiple earth observation sensors using hyperspectral data, Remote Sensing of Environment, 77(3), 304-327. https://doi.org/10.1016/S0034-4257(01)00211-5
  17. Thome, K., K. Arai, S. Hook, H. Kieffer, H. Lang, T. Matsunaga, A. Ono, 1998. ASTER preflight and inflight calibration and the validation of level 2 products, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1161-1172. https://doi.org/10.1109/36.701023
  18. USGS. Remote sensing technologies. cal val portal. http://calval.cr.usgs.gov/.