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ABSTRACT: Constructing speaker embeddings in speaker verification is an important issue. In general, a 

self-attention mechanism has been applied for speaker embedding encoding. Previous studies focused on training 

the self-attention in a high-level layer, such as the last pooling layer. In this case, the effect of low-level layers is 

not well represented in the speaker embedding encoding. In this study, we propose Masked Cross Self-Attentive 

Encoding (MCSAE) using ResNet. It focuses on training the features of both high-level and low-level layers. 

Based on multi-layer aggregation, the output features of each residual layer are used for the MCSAE. In the 

MCSAE, the interdependence of each input features is trained by cross self-attention module. A random masking 

regularization module is also applied to prevent overfitting problem. The MCSAE enhances the weight of frames 

representing the speaker information. Then, the output features are concatenated and encoded in the speaker 

embedding. Therefore, a more informative speaker embedding is encoded by using the MCSAE. The experimental 

results showed an equal error rate of 2.63 % using the VoxCeleb1 evaluation dataset. It improved performance 

compared with the previous self-attentive encoding and state-of-the-art methods.

Keywords: Speaker verification, Masked cross self-attentive encoding, Speaker embedding, ResNet

PACS numbers: 43.72.Fx, 43.71.Bp

초    록: 화자 검증에서 화자 임베딩 구축은 중요한 이슈이다. 일반적으로, 화자 임베딩 인코딩을 위해 자기주의 메커니

즘이 적용되어졌다. 이전의 연구는 마지막 풀링 계층과 같은 높은 수준의 계층에서 자기 주의를 학습시키는 데 중점을 

두었다. 이 경우, 화자 임베딩 인코딩 시 낮은 수준의 계층의 영향이 감소한다는 단점이 있다. 본 연구에서는 잔차 네트

워크를 사용하여 Masked Cross Self-Attentive Encoding(MCSAE)를 제안한다. 이는 높은 수준 및 낮은 수준 계층의 

특징 학습에 중점을 둔다. 다중 계층 집합을 기반으로 각 잔차 계층의 출력 특징들이 MCSAE에 사용된다. MCSAE에

서 교차 자기 주의 모듈에 의해 각 입력 특징의 상호 의존성이 학습된다. 또한 랜덤 마스킹 정규화 모듈은 오버 피팅 문제

를 방지하기 위해 적용된다. MCSAE는 화자 정보를 나타내는 프레임의 가중치를 향상시킨다. 그런 다음 출력 특징들

이 합쳐져 화자 임베딩으로 인코딩된다. 따라서 MCSAE를 사용하여 보다 유용한 화자 임베딩이 인코딩된다. 실험 결

과, VoxCeleb1 평가 데이터 세트를 사용하여 2.63 %의 동일 오류율를 보였다. 이는 이전의 자기 주의 인코딩 및 다른 

최신 방법들과 비교하여 성능이 향상되었다.

핵심용어: 화자검증, 마스킹된 교차 자기주의 인코딩, 화자 임베딩, 잔차 네트워크
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I. Introduction

Speaker recognition aims to identify speaker information 

from input speech. A type of speaker recognition is 

Speaker Verification (SV). It determines whether the test 

speaker’s speech is accept or reject compared to the 

enrolled speaker’s speech.

Traditionally, the Gaussian mixture model with universal 

background model has been used to encode supervector 

representing speaker information.[1,2] Next, a joint factor 

analysis method has been proposed to separate the 

supervector from the channel and speaker factors.[3] 

However, these methods required an enormous amount of 

data for the enrollment. An i-vector has been proposed to 

solve this issue. It has been used with probabilistic linear 

discriminant analysis.[4-5]

Since the introduction of deep learning, d-vector have 

been extracted directly from Deep Neural Networks 

(DNN).[6] It is trained by using the DNN-based speaker 

classifier. Then the activations of the last hidden layer are 

encoded as speaker embedding. In addition, speaker 

embedding encodings using various DNN-based models 

have been proposed. In time delay neural network 

(TDNN)-based model, the x-vector has been proposed. It 

is a fixed dimensional statistics vector, encoded by using 

statistical pooling.[7] Among the Convolutional Neural 

Network (CNN)-based models, ResNet[8] has been used as 

a representative model for speaker embeddings.[9-14]

Attention mechanisms successfully applied to other 

areas, such as image and language processing.[15-19] In SV, 

TDNN or CNN model-based speaker embedding encodings 

using attention mechanism have been proposed.[9,12,20-25] 

Especially, the self-attention mechanism[16] has exhibited 

high performance in speaker embedding encoding as 

called Self-Attentive Pooling (SAP).[9,24,25] The SAP is 

used to encode frame-level features into a utterance-level 

feature. It focuses on the frames by training interdependence 

with a context vector. In addition, an SAP-derived method 

called Multi-Head Attentive Pooling (MHAP) has been 

proposed to improve performance.[25]

However, these previous methods are focused on 

training the self-attention in a high-level layer instead of 

the lower-level layers. In other words, speaker embedding 

is encoded by using only the output feature of the last 

pooling layer. It results in decreased low-level features 

effect in the encoding of a speaker embedding. Therefore, 

it is difficult to encode the speaker embedding with more 

discriminative power.

Therefore, we propose a Masked Cross Self-Attentive 

Encoding (MCSAE). This is a new SAP-derived speaker 

embedding encoding using ResNet. MCSAE focuses on 

the features of both the high-level and low-level layers in 

the self-attention training. Based on Multi-Layer Aggrega-

tion (MLA),[14] the output features of each residual layer 

are used as the input pair of the MCSAE, as shown in Fig. 

1. In the MCSAE, the interdependence of each input 

features is trained by a cross self-attention module. A 

random masking regularization module also applied to 

prevent overfitting problem. The MCSAE enhances the 

weight of frames representing the speaker information. 

Then, the output features are concatenated and encoded in 

the speaker embedding. Therefore, a more discrimitive 

speaker embedding is encoded by using the MCSAE. 

We introduce the concept of self-attention and its use in 

Section 2, describe the proposed MCSAE in Section 3, 

present the results in Section 4, and present our 

conclusions in Section 5.

II. Concept of self-attention 

mechanism and its use

2.1 Self-attention mechanism

The principle of the self-attention mechanism is to focus 

Fig. 1. Overview of the proposed network using MCSAE.
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on training the specific context information. In machine 

translation, self-attention using scaled dot-product attention 

and MHAP has been proposed.[16] The scaled dot-product 

attention is formulated as in Eq. (1). 

  


 (1)

The inputs are comprised of the query (), key (), and 

value (). To train the relationship between  and , 

scaling is applied to compute similarity using dot product 

operations on all  and  elements and each element is 

divided by   (

 is the dimension of ). Next, after 

applying the softmax method for normalization, the 

weights for  are obtained. The more similar  is to , the 

higher its value, more attention will be paid to .

2.2 Self-attention in speaker verification

In SV, SAP, which is applied to TDNN and ResNet- 

based models, outperforms both the conventional Tem-

poral Average Pooling (TAP) and Global Average Pooling 

(GAP).[9,24,25] 

An input feature of the hidden layer  



 ⋯



⋯

   of length   is fed into a fully-connected hidden 

layer to obtain  



 ⋯ 


⋯

  . Given that 



∈ and a learnable context vector ∈ the attention 

weight 

 is measured by training the similarity between 



 and  with softmax normalization as in Eq. (2).







  






⋅



⋅
. (2)

Then, the embedding vector ∈ is generated by the 

weighted sum between the normalized attention weights 



 and 


 as in Eq. (3).


 








 (3)

Hence, an utterance-level feature focused on each frame 

is encoded. Additionally, based on this process, the MHAP 

is conducted by performing several linear projections on 

each input.[25]

2.3 Previous cross attention and masking 

methods

Our proposed cross self-attention and masking methods 

are inspired by the studies conducted by the References 

[18], [19], respectively.

In image-text matching, cross attention has been 

proposed to identify the appropriate text appearing in an 

input image.[18] The inputs are encoded in both image-text 

and text-image formulations. Then, the cross attention is 

applied to both pairs for obtaining more accurate weights 

than that obtained with just one attention mechanism. 

In person re-identification, masking method and 

attention mechanism have been applied. These are used to 

solve the problem of the neglected dissimilarities between 

the source and the target.[19] In the attention process 

between the source and the target, a masking matrix of 

integer [1 or -1], according to the label is used.

III. Masked cross self-attentive 

encoding based speaker 

embedding

3.1 Model architecture

The proposed model builds on previous research on the 

speaker embedding encoding based on MLA.[14] The 

modified ResNet model is trained for speaker classifi-

cation in an end-to-end training process using several 

pooling layers. 

The proposed model architecture is modified by using a 

standard ResNet-34 model.[8] It adds MCSAE after each 

pooling, as shown in Fig. 1 and Table 1. The proposed 

model has 4 residual layers, 16 residual blocks, and half 

the number of channels of a standard ResNet-34. Each 

residual block consists of convolution layers, batch 



Soonshin Seo and Ji-Hwan Kim

한국음향학회지 제39권 제5호 (2020)

500

normalizations, and leaky ReLU activation functions 

(LReLU). Especially, the output features of each residual 

layer is encoded in the speaker embedding in order, from 

low-level representation information to high-level re-

presentation information.

The output features (

,


) of the two previous 

pooling layers are used as inputs to the   MCSAE. As 

shown below 

, which refers to the  segment matrix of 

the attention matrix  is generated by applying the 

random masking regularization module and cross self- 

attention module as in Eq. (4).








 ≤ ≤  (4)

Here, 

 the output of each MCSAE is used to generate an 

attention matrix  of × size using matrix product 

calculation in a matmul layer as in Eq. (5).



×


×


×


×


 (5)

To match the dimension, an embedding 

 of × size 

extracted from the pooling-1 layer is used for the matrix 

product. Using the 

 matrix allows dimensional 

matching without increasing the parameters.

In the concat layer, embedding 

 of × size 

extracted from the pooling-5 layer is concatenated with 

attention matrix . The embedding 

 is standard 

embedding in ResNet without the MCSAE. As a result, an 

embedding   of × size is encoded as in Eq. (6). 

 
 . (6)

Finally, the concatenated embedding is encoded into fully- 

connected layers (fc layer) and output layer representing 

the speaker classes (output layer). Through this process, a 

512-dimensional speaker embedding is extracted.

3.2 Cross self-attention module

The MCSAE employs two main proposed modules: 1) a 

cross self-attention module and, 2) a random masking 

regularization module. They aim to encode the segment 

matrix 

 that generates the attention matrix . The 

MCSAE is based on the scaled dot-product attention 

mechanism used in the reference 16. We assume that the 

feature 

 is a step preceding feature 


 and they are 

closely related to each other, which is further emphasized 

by the attention mechanism. Therefore, the cross 

self-attention module is able to train the interdependence 

between the feature 

 and feature 


.

As depicted in Fig. 2, the MCSAE consists of two input 

pairs performing cross self-attention. The first self- 

attention input consists of 

 (query, ), 


 (key, ), 

and 


 (value, ). After the scaled dot-product 

Table 1. Proposed model architecture using MCSAE 
(D: dimension of input feature, L: length of input 
feature, N: number of speakers, SE: speaker em-
bedding).

Layer
Modified 

ResNet-34

Output

Size

Embedding

Size

conv-1
×, 32, 

stride 1
×× -

pooling-1 avg. pooling - × 



res-1


× 
× 



× ×× -

pooling-2 avg. pooling - × 



mcsae-1 MCSAE - × 



res-2


× 
× 



×

×
×

-

pooling-3 avg. pooling - × 



mcsae-2 MCSAE - × 



res-3


× 
× 



×

×
×

-

pooling-4 avg. pooling - × 



mcsae-3 MCSAE - × 



res-4


× 
× 



×

×
×

-

pooling-5 avg. pooling - × 



mcsae-4 MCSAE - × 



matmul - - × 

concat - - × 

fc-1 × - -

fc-2 × - -

fc-3 × - × 

output × - -
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operation between  and , self-attention is performed to 

the target  as in Eq. (7) (so, 


 is the attention target).

  
 . (7)

Before the scaled dot-product operation, a random 

masking regularization module is applied to feature 

 as 

shown in Fig. 3. Then, a transform layer is applied to 

masked 

. Here, an input feature 


  ⋯



⋯

   of length   (∈) is fed into the transform 

layer to obtain  



 ⋯ 


⋯

  
∈  

using LReLU activation function with slope  as in Eq. (8).



 





. (8)

Next, scaling to the value of   (


 is the dimension of 

) is performed and normalization is applied using the 

softmax function. The computed matrix is multiplied by  

and self-attention is finally conducted.

Conversely, the second self-attention input consists of 




 (), 

 (), and 


 (). As 


 is the attention 

target, the scaled dot attention mechanism is performed the 

same as earlier. The matrix 

 is encoded using matrix 

multiplication for the output of the masked cross 

self-attention as Eq. (9).












×










. (9)

3.3 Random masking regularization module

A random masking regularization module is applied for 

MCSAE, as depicted in Fig. 3. It is inspired by the 

Reference [19]. It aims to prevent overfitting problem in 

attention process of the MCSAE layer. The masking map 

consists of random integers, [0 or 1], according to the value 

of the adaptive scaling factor (default value is 0.5), which 

determines the range of masking that is updated by 

training. As the scaling factor value increases, the range of 

the masking widens. Then, masking is performed to input 

the feature and element-wise multiplication. The masked 

value was filled with zero.

IV. Experiments

4.1 Dataset setup

In this study, we trained the proposed model using the 

VoxCeleb2 dataset,[26] which contained over 1 million 

utterances from 5,994 celebrities. These are large-scale 

text-independent SV datasets collected from YouTube. 

We evaluated the proposed methods using the VoxCeleb1 

evaluation dataset containing 40 speakers and 37,220 pairs 

of official test protocol.[27]

Matmul

Scale

Softmax

����� ������� �������

��

Matmul

Mask

Transform

Matmul

Matmul

Scale

Softmax

������� ����� �����

Matmul

Mask

Transform

Fig. 2. Overview of the proposed MCSAE (dashed 
box: self-attention module, matmul: matrix multi-
plication).

Input Feature Masking Map

Masked Input Feature

Fig. 3. Overview of the proposed random masking 
regularization module.
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4.2 Experimental setup

The input feature vectors were 64-dimensional log 

Mel-filterbank energies of width 25 ms and shift size 10 

ms, which were mean-variance normalized over a sliding 

window of up to 3 s. For each training step, 12 s interval 

was extracted from each utterance using cropping or 

padding. In training, we also used the preprocessing 

method to perform time and frequency masking on input 

features. 

For parameters training, we used the standard stochastic 

gradient descent optimizer with a momentum of 0.9, a 

standard cross-entropy loss function, and a weight decay 

of 0.0001 at an initial learning rate of 0.1, reduced by a 0.1 

decay factor on the plateau. Early stopping in 200 epochs 

was performed with 96 mini-batch size. The initial 

adaptive scaling factor was 0.5 in the random masking 

regularization. 

Our proposed model was implemented in an end-to-end 

manner using PyTorch.[28] It does not used additional 

methods after extracting the speaker embedding such as 

the References [10], [14]. From the trained model, we 

extracted a speaker embedding and evaluated it using 

cosine similarity metrics: equal error rate (EER, %) 

performance.

4.3 Experimental results

We experimented with the proposed model using two 

types of comparisons. The first describes comparisons 

with previous self-attentive encoding in Table 2. The 

second describes comparisons with various state-of-the-art 

encodings in Table 3.

Table 2 shows the results according to the modifications 

of ResNet-34 up to the proposed MCSAE. We applied 

GAP and SAP methods to ResNet-34. In this case, 

256-dimensional speaker embedding was extracted in the 

last residual layer. Based on MLA, the SAP was performed 

on the output features of each residual layer (MLA-SAP). 

Next, the proposed MCSAE was tested. The results 

showed that the proposed MCSAE performed better than 

the previous self-attentive encodings.

Table 3 shows the results of the comparison with the 

state-of-the-art encodings. Here, we focused on speaker 

embedding encodings using a CNN-based model with the 

softmax loss function. These models were proposed for 

using various approaches such as TAP,[26] NetVLAD,[11] 

and GhostVLAD.[11] In addition, SAP-derived encodings 

were compared such as MHAP,[25] SAP.[9] The results 

showed that the proposed MCSAE was comparable to 

various state-of-the-art methods.

V. Conclusions

In this study, we proposed a new SAP-derived method 

for speaker embedding encoding called MCSAE. The 

model was focused on training both high-level and 

low-level layers in the ResNet architecture, in order to 

encode a more informative speaker embedding. In the 

Table 2. Experimental results compared with previous 
encodings including SAP (Dim: dimension of speaker 
embedding).

Model Encoding Dim EER

ResNet-34

GAP 256 4.57

SAP 256 4.24

MLA-SAP 512 3.49

MCSAE 

(proposed)
512 2.63

Table 3. Experimental results compared with state- 
of-the-arts methods (*These models used VoxCeleb1 
training dataset, which is smaller than the VoxCeleb2 
dataset).

Model Encoding Dim EER

ResNet-34[9]* SAP 128 5.51

VGG[25]* MHAP 512 4.00

ResNet-34[26] TAP 512 5.04

ResNet-50[26] TAP 512 4.19

Thin-ResNet-34[11] NetVLAD 512 3.57

Thin-ResNet-34[11] GhostVLAD 512 3.22

ResNet-34l*
MCSAE

(proposed)
512 4.18

ResNet-34
MCSAE

(propsoed)
512 2.63
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MCSAE, the cross self-attention module improved the 

concentration of the speaker information by training the 

interdependence among the features of each residual layer. 

A random masking regularization module prevented 

overfitting in the attention process of the MCSAE. The 

experimental results using the VoxCeleb1 evaluation 

dataset showed that the proposed MCSAE improved 

performance when compared with previous self-attentive 

encoding and state-of-the-art methods.
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