DOI QR코드

DOI QR Code

Estimation of Ultimate Bearing Capacity of SCP and GCP Reinforced Clay for Laboratory Load Test Data

SCP 및 GCP 개량 점성토지반의 실내재하시험에 대한 극한지지력 산정 방법 개발

  • Bong, Tae-Ho (School of Civil and Construction Engrg., Oregon State Univ.) ;
  • Kim, Byoung-Il (School of Civil and Construction Engrg., Oregon State Univ.) ;
  • Han, Jin-Tae (Earthquake Safety Research Center, Korea Institute of Civil Engrg. & Building Technology)
  • 봉태호 (오레곤 주립대학교 토목건설공학과) ;
  • 김병일 (오레곤 주립대학교 토목건설공학과) ;
  • 한진태 (한국건설기술연구원 지진안전연구센터)
  • Received : 2018.04.19
  • Accepted : 2018.05.31
  • Published : 2018.06.30

Abstract

In this study, 34 laboratory load test data were collected, and analyzed to propose the equations for predicting ultimate bearing capacity of sand compaction pile (SCP) and gravel compaction pile (GCP) reinforced clay. The collected data were compared with the ultimate bearing capacity estimated by existing theoretical equations, and the prediction accuracy of the existing theoretical equations was identified. Also, multiple regression analysis was performed to predict the ultimate bearing capacity, and the most efficient number and type of input variables were selected through error evaluation by leave-one-out cross validation. Finally, the multiple regression equations for estimating the ultimate bearing capacity of laboratory load test for SCP and GCP were proposed, and their performance was evaluated.

본 연구에서는 모래다짐말뚝(sand compaction pile, SCP)과 자갈다짐말뚝(gravel compaction pile, GCP)으로 보강된 지반의 극한지지력을 예측할 수 있는 식을 제안하고자 34개의 국내외 실내재하시험 데이터를 수집하고 이를 분석하였다. 수집된 자료를 기존의 이론식에 의한 극한지지력 산정 값과 비교하여 기존 이론식의 예측 정도를 파악하였다. 또한 극한 지지력 예측식을 제안하고자 다중회귀분석을 수행하였으며, 단일잔류 교차검증에 따른 예측오차평가를 통하여 가장 효율적인 입력변수의 수 및 조합을 선정하였다. 최종적으로 SCP와 GCP의 실내재하시험에 대한 극한 지지력을 예측하기 위한 다중회귀식을 제안하였으며 그 성능을 평가하였다.

Keywords

References

  1. Balaam, N. P., Poulos, H. G., and Brown, P. T. (1978), "Settlement Analysis of Soft Clays Reinforced with Granular Piles", Proc., 5th Asian Conf. on Soil Engineering, Bangkok, Thailand, pp.81-92.
  2. Barksdale, R. D. and Bachus, R. C. (1983), Design and construction of stone columns, Rep. No. FHWA/RD 83/026, Federal Highway Administration, Washington, DC.
  3. Bergado, D. T. and Lam, F. L. (1987), "Full Scale Load Test of Granular Piles with Different Densities and Different Proportions of Gravel and Sand in the Soft Bangkok Clay", Soils and Foundations, Vol.27, No.1, pp.86-93. https://doi.org/10.3208/sandf1972.27.86
  4. Bong, T. H. and Kim, B. I. (2017), "Prediction of Ultimate Bearing Capacity of Soft Soils Reinforced by Gravel Compaction Pile Using Multiple Regression Analysis and Artificial Neural Network", Journal of the Korean Geotechnical Society, Vol.33, No.6, pp.27-36. https://doi.org/10.7843/KGS.2017.33.6.27
  5. Brauns, J. (1978), "Initial Bearing Capacity of Stone Columns and Sand Piles", Vol. I, Proc. Soil Reinforcing and Stabilizing Techniques in Engineering Practice, New South Wales Institute of Technology, Sydney, Australia, pp.497-512.
  6. Choi, Y. K. (2007), "A Study of Field Test on Bearing Capacity Increase Effect of Single Stone Column", Journal of the Korean Geotechnical Society, Vol.23, No.12, pp.5-11.
  7. Fattah, M. Y., Al-Neami, M. A., and Al-Suhaily, A. S. (2017), "Estimation of Bearing Capacity of Floating Group of Stone Columns", Engineering Science and Technology, an International Journal, Vol.20, pp.1166-1172. https://doi.org/10.1016/j.jestch.2017.03.005
  8. George, T. and Hari, G. (2016), "Bearing Capacity Effect of Soft Clay with Sand Compaction Piles", International Journal of Science and Research, Vol.5, No.4, pp.1132-1135.
  9. Greenwood, D. A. (1970), "Mechanical Improvement of Soils Below Ground Surface", Proc. Ground Engineering Conference, Institute of Civil Engineering, pp.9-20.
  10. Hansbo, S. (1994), Foundation Engineering, Developments in Geotechnical Engineering, Elsevier Press, Vol.95, pp.450-455.
  11. Hughes, J. M. O., Withers, N. J., and Greenwood, D. A. (1975), "A Field Trial of the Reinforcing Effect of a Stone Column in Soil", Geotechnique, Vol.25, No.1, pp.31-44. https://doi.org/10.1680/geot.1975.25.1.31
  12. Kang, Y. and Kim, H. T. (2004), "Analysis of Bearing Capacity Characteristics on Granular Compaction Pile- focusing on the Model Test Results", Journal of the Korean Geoenvironmental Society, Vol.5, No.2, pp.51-62.
  13. Kim, B. I. and Lee, S. H. (2005), "Comparison of Bearing Capacity Characteristics of Sand and Gravel Compaction Pile Treated Ground", KSCE Journal of Civil Engineering, Vol.9, No.3, pp.197-203. https://doi.org/10.1007/BF02829050
  14. Kim, B. I., Cho, S. M., Kim, J. H., and Kim, S. R. (2015), Soft Ground Improvement Method, CIR Publishing Co. pp.239-283.
  15. Kim, B. I., Lee, S. W., Kim, B. S., and Lyu, W. K. (2004), "Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests", Journal of the Korean Geotechnical Society, Vol.20, No.8, pp.41-48.
  16. Kim, B. I., Yoo, W. K., Kim, K. U., and Moon, I. J. (2013), "An Experimental Study on the Behavior of Composite Ground Improved by SCP and GCP with Low Replacement Ratio", Journal of the Korea Academia-Industrial cooperation Society, Vol.14, No.2, pp. 936-942. https://doi.org/10.5762/KAIS.2013.14.2.936
  17. Kim, H. T. and Kang, Y. (2004), "Analysis of Load-Settlement Behavior Characteristics of Granular Compaction Pile from the Model Tests", Journal of the Korean Geoenvironmental Society, Vol.5, No.4, pp.33-45.
  18. Kim, M. S., Na, S. J., Yang, Y. H., and Kim, D. (2016), "Analysis on the Analytical Behavior of Soft Ground Reinforced with Granular Compaction Piles", Journal of the Korean Geosynthetic Society, Vol.15, No.3, pp.37-50. https://doi.org/10.12814/jkgss.2016.15.1.037
  19. Kitazume, M. (2005), The Sand Compaction Pile Method, Balkema, pp.1-7.
  20. Madhav, M. R. and Vitkar, P. P. (1978), "Strip Footing on Weak Clay Stabilized with a Granular Trench or Pile", Canadian Geotechnical Journal, Vol.15, No.4, pp.605-609. https://doi.org/10.1139/t78-066
  21. Malarvizhi, S. N. and Ilamparuthi, K. (2004), "Load Versus Settlement of Claybed Stabilized with Stone & Reinforced Stone Columns", Proc. 3rd Asian Regional Conference on Geosynthetics, GEOASIA, Seoul, pp.322-329.
  22. Mitchell, J. K. (1981), "Soil Improvement - State-of-the-art Report", Proc. 10th Int. Conf. on Soil Mechanics and Foundation Engineering, Session 12, Int. Society of Soil Mechanics and Foundation Engineering, London, Vol.4, pp.506-565.
  23. Mitchell, J. K. and Huber, T. R. (1985), "Performance of a Stone Column Foundation", J. Geotech. Engrg., Vol.111, No.2, pp.205-223. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:2(205)
  24. Na, S. J., Kim, D., and Kim, G. E. (2017), "The Behavior on Stress and Settlement of GCP Composite Ground with Different Shear Strength of Soil", Journal of the Korean Geosynthetic Society, Vol.16, No.3, pp.63-74. https://doi.org/10.12814/jkgss.2017.16.1.063
  25. Najjar, S. S. (2013), "A State-of-the-Art Review of Stone/Sand- Column Reinforced Clay System", Geotechnical and Geological Engineering An International Journal, Vol.31, No.2, pp.355-386. https://doi.org/10.1007/s10706-012-9603-5
  26. Stone, M. (1974), "Cross-validatory Choice and Assessment of Statistical Predictions", J. Roy. Statist. Soc. Ser. B, Vol.36, pp. 111-147.
  27. Stuedlein, A. W. and Holtz, R. D. (2013), "Bearing Capacity of Spread Footings on Aggregate Pier Reinforced Clay", J. Geotech. Geoenviron. Eng., Vol.139, No.1, pp.49-58. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000748
  28. Vesic, A. S. (1972), "Expansion of Cavities in Infinite Soil Mass", J. Soil Mech, and Found. Div., Vol.98, No.3, pp.265-290.