• Title/Summary/Keyword: 다이싱

Search Result 31, Processing Time 0.145 seconds

Effect of Dual-Dicing Process Adopted for Silicon Wafer Separation on Thermal-Cycling Reliability of Semiconductor Devices (실리콘 웨이퍼에 2중 다이싱 공정의 도입이 반도체 디바이스의 T.C. 신뢰성에 미치는 영향)

  • Lee, Seong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2009
  • This work shows how the adoption of a dual-dicing process for silicon wafer separation affects the thermal-cycling reliability (i.e. $-65^{\circ}C$ to $150^{\circ}C$) of the semiconductor devices utilizing lead-on-chip (LOC) die attach technique. In-situ examinations show that conventional single-dicing process directly attacks the edge region of diced devices but dual-dicing process effectively protects the edge region of diced devices from dicing-induced mechanical damage. Probably, this is because the preferential and sacrificial fracture of notched regions induced on the active surface of wafers saves the edge regions. It was also investigated through thermal-cycling tests that the number of thermal-cycling induced failures is much lower at the dual-dicing process than the single-dicing process.

  • PDF

A Study on a Laser Dicing and Drilling Machine for Si Thin-Wafer (UV 레이저를 이용한 Si Thin 웨이퍼 다이싱 및 드릴링 머신)

  • Lee, Young-Hyun;Choi, Kyung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.478-480
    • /
    • 2004
  • 다이아몬드 톱날을 이용한 얇은 Si 웨이퍼의 기계적인 다이싱은 chipping, crack 등의 문제점을 발생시킨다. 또한 stacked die 나 multi-chip등과 같은 3D-WLP(wafer level package)에서 via를 생성하기 위해 현재 사용되는 화학적 etching은 공정속도가 느리고 제어가 힘들며, 공정이 복잡하다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해 현재 연구되고 있는 분야가 레이저를 이용한 웨이퍼 다이싱 및 드릴링이다. 본 논문에서는 UV 레이저를 이용한 얇은 Si 웨이퍼 다이싱 및 드릴링 시스템에 대해 소개하고, 웨이퍼 다이싱 및 드릴링 실험결과를 바탕으로 적절한 레이저 및 공정 매개변수에 대해 설명한다.

  • PDF

Study of high Speed Laser Cutting of LED Module (LED 모듈의 초고속 레이저 절단을 위한 연구)

  • Choi, Won Yong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • In this study, we conducted the preliminary research for high speed laser cutting of LED module. In particular, the feasibility of ultra-high speed laser cutting of 100 mm/s which exceeds the cutting speed of conventional dicing saw was examined. For this, copper/ceramic and silicone/ceramic hybrid substrates, which are the components of the LED module, were fabricated, and the surface morphology, surface roughness and flexural strength of the laser-cut samples were investigate and compared with the dicing-cut samples. To investigate optimal laser cutting conditions for hybrid substrates, the effects of various laser cutting conditions on cutting surface characteristics were studied using single ceramic and copper substrate. Optimal laser cutting conditions of the hybrid substrates were the use of Ar assist gas, high laser power and high assist gas pressure. Comparing the cutting surface of the hybrid substrates, the surface characteristics of the laser-cut samples are slightly inferior to those of the dicing-cut samples. The average surface roughness of the laser-cut samples was about $9{\mu}m$, and that of the dicing-cut samples was about $4{\mu}m$. However, considering very low cutting speed (3 mm/s) of the dicing saw, the surface morphology of the laser-cut sample was relatively uniform, and the surface roughness was not much different from that of the dicing-cut sample. The flexural strength of the laser-cut samples was equivalent to or slightly inferior to the flexural strength of dicing-cut samples. However, if the laser processing conditions are sufficiently optimized, the ultra-high speed laser cutting of the LED module will be possible.

A Study on Meandering Phenomenon in Dicing process (다이싱가공에 있어서 가공구사행현상에 대한 연구)

  • 정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.144-149
    • /
    • 1994
  • 반도체 산업계에 있어서 IC 등을 주류로 하는 마이크로칩의 생산성 및 성능이 현저히 성장하여 많은 경제효과를 가져오고 있다. 이와함께 전자부품에 사용되어지는 취성재료의 종류 및 그양도 점점 증가하는 추세이다. 이러한 취성재료의 절단에는 초극박의 다이야몬드 브레이드가 널리 사용되어지고 있다. 실리콘웨이퍼와 같은 취성재료의 다이싱가공에서 문제가 되고있는것은 칩핑과 사행현상의 발생이다. 사행현상의 원인으로서는 브레이드축면의 비대칭성,절삭날의 둔화,숫돌축과 이송방향의 위치결정오차,후렌지 단면의 흔들림등을 들수 있다. 그러나, 사행의 발생영역과 사행이 계속되는 이유에 대해서는 전혀 검토되어진바 없는것이 현실이다. 본 연구에서는 다이싱가공시의 사행현상에 주목해서 사행현상의 발생영역을 명확하게 함과 동시에 AE 센서를 이용하여 인프로세서로 사행현상의 검출방법을 개발하는 것을 목적으로 한다.

  • PDF

Dicing of GAN Wafer (GAN 웨이퍼의 다이싱)

  • 최범식;차영엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.484-487
    • /
    • 1997
  • The dicing is a process of gaining chip from a wafer. It is done by some mechanism to lengthwise and crosswise. Here, it is focused on measuring a depth of the wafer hefore a process of the dicing. First of all, it checks a precise outer position for the wafer on table to gain the chip. Second, the xafer should he lined after Imowing how much depth, it is in out of the outer position of the wafer. Here suggests that there are a composition of mechanical system, how to measure a depth out of scriber axis, a result from testing.

  • PDF

PC 기반의 다이싱 공정 자동화 시스템 개발

  • 김형태;양해정;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.47-57
    • /
    • 2000
  • In this study, PC-based dicing machine and driving software were constructed for the purpose of automation of wafer cutting process. To automate the machine, hard automation including vision, loading, and software were considered in the development. Auto loading device and vision system were adopted for the increase of productivity, GUI software programmed for the expedient operation. The dicing machine is operated by the control algorithm and some parameters. It is verified that this kind of PC based automation has a great potential compared with the conventional dicing machine when applied to manufacturing some kinds of wafers as a test purpose.

  • PDF

Wafer Dicing State Monitoring by Signal Processing (신호처리를 이용한 웨이퍼 다이싱 상태 모니터링)

  • 고경용;차영엽;최범식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.70-75
    • /
    • 2000
  • After the patterning and probe process of wafer have been achieved, the dicing process is necessary to separate chips from a wafer. The dicing process cuts a wafer to lengthwise and crosswise direction to make many chips by using narrow circular rotating diamond blade. But inferior goods are made under the influence of complex dicing environment such as blade, wafer, cutting water and cutting conditions. This paper describes a monitoring algorithm using feature extraction in order to find out an instant of vibration signal change when bad dicing appears. The algorithm is composed of two steps: feature extraction and decision. In the feature extraction, two features processed from vibration signal which is acquired by accelerometer attached on blade head are proposed. In the decision. a threshold method is adopted to classify the dicing process into normal and abnormal dicing. Experiment have been performed for GaAs semiconductor wafer. Based upon observation of the experimental results, the proposed scheme shown a good accuracy of classification performance by which the inferior goods decreased from 35.2% to 12.8%.

  • PDF

A New Dicing Method for Semiconductor Wafer (반도체 웨이퍼를 위한 새로운 다이싱 방법)

  • Cha, Young-Youp;Choi, Bum-Sick
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1309-1316
    • /
    • 2003
  • The general dicing process cuts a semiconductor wafer to lengthwise and crosswise direction by using a rotating circular diamond blade. But products with inferior quality are produced under the influence of several parameters in dicing process such as blade, wafer, cutting water and cutting conditions. Moreover we can not apply this dicing method to GaN wafer, because the GaN wafer is harder than the other wafer such as SiO2, GaAs, GaAsP, and AlGaAs. In order to overcome this problem, development of a new dicing process and determination of dicing parameters are necessary. This paper describes a new wafer dicing method using fixed diamond scriber and precision servo mechanism and determination of several parameters - scribing depth, scribing force, scriber inclined angle, scribing speed, and factor for scriber replacement - for a new dicing machine using scriber.

A Study on the Flatness Evaluation Method of the Dicing Chuck using Chucked-wafer (웨이퍼 장착을 이용한 다이싱 척의 평탄도 평가 방법에 관한 연구)

  • Yook, In-Soo;Lee, Ho-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • This study was conducted to evaluate the flatness of the porous type of dicing chuck. Two measurement systems for a vacuum chuck with a porous type of ceramic plate were prepared using a digital indicator and a laser interferometer. 6 inch of silicon and glass wafer were also used. Vacuum pressure from 100mmHg to 700mmHg by 100mmHg was increased. From experiments, chucked-wafer flatness was converged to the dicing chuck flatness itself even though the repeatability of contact method using indicator was unstable. Finally, the chuck flatness was estimated below $2{\mu}m$ with peak-to valley value.

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.