• Title/Summary/Keyword: 다공 손실 모델

Search Result 12, Processing Time 0.024 seconds

Experimental Study on Acoustic Characteristics of Perforated Tube and Perforated Tube Muffler (다공관 및 다공형 소음기의 음향학적 특성에 대한 실험적 연구)

  • Yoon, Doo-Byung;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.62-72
    • /
    • 1995
  • The acoustic characteristics of perforated tube muffler are studied in terms of non-dimensional wavenumber ka and admittance-ratio AZ. This study includes not only the case of perforated tubes having uniform hole distribution along the length but also the case of having non-uniform hole distributions. The acoustic hole impedance and transmission loss of perforated tube of which has various hole distributions were measured. The experimental results demonstrated that the transmission loss of perforated tube is a function of non-dimensional wave number ka and admittance-ratio AZ. The transmission loss of perforated tube muffler is predicted by the numerical method which is based on Sullivans and compared with the experimental ones.

  • PDF

Design of a Perforated Panel for Transmission Noise Reduction (투과 소음 저감을 위한 다공성 패널 설계)

  • Park, Younghyo;Bae, Jaehyeok;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.437-445
    • /
    • 2015
  • A design method for a perforated panel is suggested to reduce the level of incident noise without obstructing the flow of incoming fluid. The key idea was to insert an array of 1/4 wavelength tubes around the holes of the perforate panel. First, various case studies were performed for a unit model with only one hole. In order to avoid any increase in the panel thickness, the unit model was vertically divided into three layers, and only the middle layer was used as the design domain. The number and array of 1/4 wavelength tubes connected to the hole were optimized to obtain the widest effective frequency range in the transmission loss curve as possible. Then, the optimally designed unit model was converted to a periodic array in the perforated panel to achieve the design goals. Even if the target frequency and the target transmission loss were set to 1000 Hz and 10 dB, respectively, the suggested design method for the a perforated panel could achieve noise reduction for various target values.

Calculating transmission loss of cylindrical silencers lined with multi-layered poroelastic sound absorbing materials using mode matching method (모드 매칭법을 이용한 다층 다공성 탄성 흠음재가 채워진 원통형 소음기의 음향투과손실 계산)

  • Lee, Jongmoo;Yang, Haesang;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.375-388
    • /
    • 2022
  • This paper deals with the process of obtaining sound transmission loss of a cylindrical silencer lined with multi-layered poroelastic sound absorbing materials. The Biot model and the Johnson-Champoux-Allard-Lafarge (JCAL) model were used to deal with waves propagating in multi-layered poroelastic materials. The boundary conditions required for analysis of the silencer were obtained and the numerical process of finding modes was explained. A numerical experiment was conducted on the 2-layered silencer using the modes and the transmission loss converged with the first 12 modes. Finally, the mode matching method proposed in this research was validated by being compared with the results calculated from Finite Element Method (FEM) about different kinds of sound absorbing materials.

Porous modeling for the prediction of pressure drop through a perforated strainer (타공형 스트레이너의 압력강하 예측을 위한 다공성모델링)

  • Jung, Il-Sun;Park, Jae-Hyun;Bae, Jae-Hwan;Kang, Sangmo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.358-367
    • /
    • 2013
  • In the present paper, we apply a porous modelling technique to accurately predict the pressure drop through the strainer by replacing all or some of the filter composed of perforated plates with porous media and there imposing the streamwise and transverse loss coefficients required according to the Forchheimer law and then confirm its effectiveness. At first, the streamwise coefficient is obtained by performing a simple simulation on the pipe flow mimicking the hole flow. Subsequently, the transverse coefficient is obtained by setting a unit pattern to have common flow loss characteristics with the repeated shape patterns in the filter, then performing numerical simulations on the prototype and porous model of the unit shape pattern, and finally comparing their results of pressure drop. To validate the applied modeling technique, we perform the numerical simulation with the two specified loss coefficients on a whole shape of strainer and compare the modeling results with those of the corresponding prototype numerical simulation. Comparison indicates that the modeling technique can predict the pressure drop and flow characteristics comparatively accurately and save the number of nodes closely related to the computational cost (CPU and memory) by about 3~4 times compared with the prototype simulation.

Thermal-Fluid Analysis with Flow Loss Coefficient on the Inlet and Exhaust Duct of Wheel-Loader (휠로더 흡배기구의 유동손실계수를 적용한 열유동해석)

  • Jeong, Chan-Hyeok;Lee, Jae-Seok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In this study, we verify the accurate numerical analysis and simplify the perforated plate of inlet and exhaust duct using porous media for the cost reduction and the efficiency improvement of thermal-fluid analysis to evaluate cooling performance of wheel-loader. The flow loss coefficient of the perforated plate is defined by the experiment result. To define analytically the flow loss coefficient of the perforated plate, we calculate the pressure drop of unit-cell and compare to experiment result. Finally, we compare the heat balance test and the simplified simulation result on the inlet and exhaust duct of wheel-loader. After this study, we verify the applicability of the simplified analysis method on the inlet and exhaust duct of wheel-loader. And, foundation which can carry out effectively the evaluation and improvement for cooling performance of wheel-loader is prepared.

Study on the Passive Shock/Boundary Layer Interaction Control in Transonic Moist Air Flow (습공기 유동에서 발생하는 충격파와 경계층 간섭의 피동제어에 관한 연구)

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.21-29
    • /
    • 2002
  • In the present study, a passive control method, using a porous wall and cavity system, is applied to the shock wave/boundary layer interactions in transonic moist air flow. The two-dimensional, unsteady, compressible, Navier-Stokes equations, which are fully coupled with a droplet growth equation, are solved by the third-order MUSCL type TVD finite difference scheme. Baldwin-Lomax model is employed to close the governing equations. In order to investigate the effectiveness of the present control method, the total pressure loss of the flow and the time-dependent behaviour of shock motions are analyzed in detail. The computed results show that the present passive control method considerably reduces the total pressure losses due to the shock wave/boundary layer interaction in transonic moist air flow and suppresses the unsteady shock wave motions over the airfoil as well. It is also found that the location of the porous ventilation significantly affects the control effectiveness.

Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells (고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링)

  • Park, Joon-Guen;Kim, Sun-Young;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.157-163
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) are commonly composed of ceramic compartments, and it is known that the physical properties of the ceramic materials can be changed according to the operating temperature. Thus, the physical properties of the ceramic materials have to be properly predicted to develop a highly reliable simulation model. In this study, several physical properties that can affect the performance of SOFCs were selected, and simulation models for those physical properties were developed using our own code. The Gibbs free energy for the open circuit voltage, exchange current densities for the activation polarization, and electrical conductivity for the electrolyte were calculated. In addition, the diffusion coefficient-including the binary and Knudsen diffusion mechanisms-was calculated for mass transport analysis at the porous electrode. The physical property and electrochemical reaction models were then simulated simultaneously. The numerical results were compared with the experimental results and previous works studied by Chan et al. for code validation.

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials (흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구)

  • Dongheon Kang;Haesang Yang;Woojae Seong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.261-269
    • /
    • 2024
  • In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

A Numerical Study of Cathode Block and Air Flow Rate Effect on PEMFC Performance (고분자전해질 연료전지의 환원극 블록과 공기 유량 영향에 대한 전산 해석 연구)

  • Jo, Seonghun;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.96-102
    • /
    • 2022
  • Reactants of PEMFC are hydrogen and oxygen in gas phases and fuel cell overpotential could be reduced when reactants are smoothly transported. Numerous studies to modify cathode flow field design have been conducted because oxygen mass transfer in high current density region is dominant voltage loss factor. Among those cathode flow field designs, a block in flow field is used to forced supply reactant gas to porous gas diffusion layer. In this study, the block was installed on a simple fuel cell model. Using computational fluid dynamics (CFD), effects of forced convection due to blocks on a polarization curve and local current density contour were studied when different air flow rates were supplied. The high current density could be achieved even with low air supply rate due to forced convection to a gas diffusion layer and also with multiple blocks in series compared to a single block due to an increase of forced convection effect.