DOI QR코드

DOI QR Code

A study on the acoustic performance of an absorptive silencer applying the optimal arrangement of absorbing materials

흡음재 최적 배치를 적용한 흡음형 소음기의 음향성능 연구

  • 강동헌 (서울대학교 조선해양공학과) ;
  • 양해상 (세종대학교 AI로봇학과) ;
  • 성우제 (서울대학교 조선해양공학과)
  • Received : 2024.03.12
  • Accepted : 2024.05.22
  • Published : 2024.05.31

Abstract

In this paper, the acoustic performance of an absorptive silencer was enhanced by optimizing an arrangement of multi-layered absorbing materials. The acoustic performance of the silencer was evaluated through transmission loss, and finite element method-based numerical analysis program was employed to calculate the transmission loss. Polyurethane, a porous elastic material frequently used in absorptive silencers, was employed as the absorbing material. The Biot-Allard model was applied, assuming that air is filled inside the polyurethane. By setting the frequency range of interest up to the 2 kHz and the acoustic performance affecting properties of the absorbing materials were investigated when it was composed as a single layer. And the acoustic performance of the silencers with the single and multi-layered absorbing materials was compared with each other based on polyurethane material properties. Subsequently, the arrangement of the absorbing materials was optimized by applying the Nelder-Mead method. The results demonstrated that the average transmission loss improved compared to the single-layered absorptive silencer.

본 논문에서는 흡음형 소음기의 음향성능을 향상시키기 위해 다층 흡음재 배치 순서를 최적화하였다. 소음기의 음향성능은 투과손실로 판단하였으며, 투과손실을 계산하기 위해 유한요소법 기반 수치해석 프로그램을 사용하였다. 흡음재는 흡음형 소음기에서 많이 사용되는 다공탄성 물질인 폴리우레탄을 사용하였으며, 내부에 공기가 흐르는 상황을 가정하여 Biot-Allard 모델을 적용하였다. 2 kHz 대역까지 관심주파수 영역을 설정하여 흡음재가 단층으로 구성되어 있을 때 음향성능에 영향을 주는 물성치를 확인하였으며, 폴리우레탄 물성치를 바탕으로 단층 및 다층 흡음재를 가진 소음기의 음향성능을 서로 비교하였다. 이후 Nelder-Mead 방법을 적용하여 소음기 내 다층 흡음재의 배치 순서를 최적화하였으며, 단층 흡음형 소음기에 비해 평균 투과손실이 증가하는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2022R1A2C1092717).

References

  1. A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff, "Analytical approach for sound attenuation in perforated dissipative silencers," J. Acoust. Soc. of Am. 115, 2091-2099 (2004).
  2. A. Selamet, M. B. Xu, I. J. Lee, and N. T. Huff, "Dissipative expansion chambers with two concentric layers of fibrous material," Int. J. Veh. Noise Vib. 1, 341-357 (2005).
  3. Y. S. Seo, K. H. Park, and J. J. Jin, "A study on the absorptive silencer for reducing noise propagate in seawater pipes on ship" (in Korean), KSNVE, 23, 770-776 (2013).
  4. Y. B. Lee and H. S. Yang, "A study on the acoustic performance of a silencer according to the change of properties of absorbing material" (in Korean), J. Acoust. Soc. Kr. 40, 278-289 (2021).
  5. B. Nennig, E. Perrey-Debain, and M. Ben Tahar, "A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow," J. Acoust. Soc. Am. 128, 3308-3320 (2010).
  6. J. M. Lee, H. S. Yang, and W. J. Seong, "Calculating transmission loss of cylindrical silencers lined with multi-layered poroelastic sound absorbing materials using mode matching method" (in Korean) J. Acoust. Soc. Kr. 41, 375-388 (2022).
  7. A. K. Gupta and A. Tiwari, "Enhancement on sound transmission loss for various positioning of inlet and outlet duct of the muffler," Int. J. Engineering and Manufacturing, 5, 1-11 (2015).
  8. COMSOL Documentation, Acoustics Module User's Guide, https://doc.comsol.com/6.2/docserver/#!/com.comsol.help.comsol/helpdesk/helpdesk.html, (Last viewed May 26, 2024).
  9. M. A. Biot, "Generalized theory of acoustic propagation in porous dissipative media," J. Acoust. Soc. Am. 34, 1254-1264 (1962).
  10. M. A. Biot, "Mechanics of deformation and acoustic propagation in porous media," J. Appl. Phys. 33, 1482-1498 (1962).
  11. J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, 2nd Ed (Elsevier, Kidlington, 2007), pp. 339-341.
  12. J. F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, 2nd Ed (John Wiley & Sons, Chichester, 2009), pp. 90.
  13. KRAIBURG PURASYS Data Sheets Vibrafoam, http://www.kraiburg-purasys.com/en/downloads/, (Last viewed May 26, 2024).
  14. D. Lee and M. Wiswall. "A parallel implementation of the simplex function minimization routine," Computational Economics 30, 171-187 (2007).