DOI QR코드

DOI QR Code

Design of a Perforated Panel for Transmission Noise Reduction

투과 소음 저감을 위한 다공성 패널 설계

  • Received : 2014.12.08
  • Accepted : 2015.01.27
  • Published : 2015.04.01

Abstract

A design method for a perforated panel is suggested to reduce the level of incident noise without obstructing the flow of incoming fluid. The key idea was to insert an array of 1/4 wavelength tubes around the holes of the perforate panel. First, various case studies were performed for a unit model with only one hole. In order to avoid any increase in the panel thickness, the unit model was vertically divided into three layers, and only the middle layer was used as the design domain. The number and array of 1/4 wavelength tubes connected to the hole were optimized to obtain the widest effective frequency range in the transmission loss curve as possible. Then, the optimally designed unit model was converted to a periodic array in the perforated panel to achieve the design goals. Even if the target frequency and the target transmission loss were set to 1000 Hz and 10 dB, respectively, the suggested design method for the a perforated panel could achieve noise reduction for various target values.

유체는 잘 통과시키면서 소음을 줄일 수 있는 다공성 패널을 설계하는 방법을 제시한다. 주된 아이디어는 1/4 파장관을 다공성 패널의 구멍들 주위에 배열하는 것이다. 먼저, 구멍이 하나만 있는 단위모델에 대한 다양한 사례 연구를 수행한다. 패널의 두께를 증가시키지 않기 위해, 단위 모델을 수직 방향으로 세 개층으로 분할하고, 가운데 분할층을 설계 영역으로 선정한다. 투과 손실 곡선 상에서 목표투과 손실 값을 상회하는 주파수 대역이 가능한 넓도록 1/4 파장관의 개수와 배열을 결정한다. 이렇게 최적 설계된 단위 모델을 다공성 패널에 주기적으로 배열하여 설계 목적을 달성하였다. 제시된 방법은 특정 목표 주파수와 목표 투과 손실 값에 대해 전개되었지만, 다양한 목표값에 적용 가능하다.

Keywords

References

  1. Estrada, H., Candelas, P., Uris. A, Belmar, F. Abajo, G. and Meseguer, F., 2008, "Extraordinary Sound Screening in Perforated Plates," Physical Review Letters, Vol. 101, No. 8, pp. 084302-1-4. https://doi.org/10.1103/PhysRevLett.101.084302
  2. Estrada, H., Gomez-Lozano, V., Uris, A., Candelas, P., Belmar, F. and Meseguer, F., 2011, "Sound Transmission Through Plates Perforated with Two Periodic Subwavelength Hole Arrays," Journal of Physics: Condensed Matter, Vol. 23, No. 13, pp. 135401-1-6. https://doi.org/10.1088/0953-8984/23/13/135401
  3. Estrada, H., Candelas, P., Uris, A., Belmar, F., Garcia de Abajo, J. and Meseguer, F., 2009, "Influence of Lattice Symmetry on Ultrasound Transmission Through Plates with Subwavelength Aperture Arrays," Applied Physics Letters, Vol. 95, No. 5, pp. 051906-1-3. https://doi.org/10.1063/1.3196330
  4. Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F. and de Abajo, F. J. G., 2008, "Influence of the Hole Filling Fraction on the Ultrasonic Transmission Through Plates with Subwavelength Aperture Arrays," Applied Physics Letters, Vol. 93, No. 1, pp. 011907-1-3. https://doi.org/10.1063/1.2955825
  5. Xu, S., Qiu, C. and Liu, Z., 2012, "Acoustic Transmission Through Asymmetric Grating Structures made of Cylinders," Journal of Applied Physics, Vol. 111, No. 9, pp. 094505-1-6. https://doi.org/10.1063/1.4709730
  6. Zhou, L., Kriegsmann, G. A., 2007, "Complete Transmission Through a Periodically Perforated Rigid Slab," Journal of Acoustics Society of America, Vol. 121, No. 6, pp. 3288-3299. https://doi.org/10.1121/1.2721878
  7. Hao, R., Qiu, C., Ye, Y., Li, C., Jia, H., Ke, M. and Liu, Z., 2012, "Transmission Enhancement of Acoustic Waves Through a Thin Hard Plate Embedded with Elastic Inclusions," Applied Physics Letters, Vol. 101, No. 2, pp. 021910-1-4. https://doi.org/10.1063/1.4736564
  8. Peng, P., Qiu, C., Hao, R., Lu, J. and Liu, Z., 2011, "Acoustic Transmission Enhancement Through a Stiff Plate Drilled with Subwavelength Side Openings," Europhyiscs Letters, Vol. 93, No. 3, pp. 34004-1-4. https://doi.org/10.1209/0295-5075/93/34004
  9. Pennec, Y., Rouhani, B. D., Larabi, H., Akjouj, A., and Leveque, G., 2012, "Perpendicular Transmission of Acoustic Waves Between Two Substrates Connected by Sub-Wavelength Pillars," New Journal of Physics, Vol. 14, No. 7, pp. 073039-1-13. https://doi.org/10.1088/1367-2630/14/7/073039
  10. Yuya, N., Sohei, N., Tsuyoshi, N. and Takashi, Y., 2009, "Sound Propagation in Soundproofing Casement Windows," Applied Acoustics, Vol. 70, No. 9, pp. 1160-1167. https://doi.org/10.1016/j.apacoust.2009.04.006
  11. Nguyen, H., Yusuke, T., Yuya, N., Sohei, N., Tsuyoshi, N. and Takashi, Y., 2012, "Prediction and Experimental Study of the Acoustic Soundproofing Windows Using a Parallelepiped SVU," The Open Acoustics Journal, Vol. 5, pp. 8-15. https://doi.org/10.2174/1874837601205010008
  12. Kitamura, Y., 2011, "Soundproofing Plate Which does not Obstruct Airflow," U.S. Patent Application 13/995, 056.
  13. Huang, T. H., 1988, "Ventilated Soundproof Glass," U.S. Patent No. 4,787,296. Washington, DC: U.S. Patent and Trademark Office.
  14. Field, C. D. and Fricke, F. R., 1995, "The Attenuation of Noise Entering Buildings Using Quarter-Wave Resonators," Proceedings of the Australian Acoustical Society Annual Conference 1995, pp. 131-134.
  15. Ihde, W. M., 1975, "Tuning Stubs to Silence Large Air Handling Systems," Noise Control Engineering, Vol. 5, No. 3, pp. 131-136. https://doi.org/10.3397/1.2832014
  16. Neise, W. and Koopmann, G. H., 1980, "Reduction of Centrifugal Fan Noise by Use of Resonators," Journal of Sound and Vibration, Vol. 73, No. 2, pp. 297-308. https://doi.org/10.1016/0022-460X(80)90697-5
  17. Zhu, Z., Li, Y. and Fang, S., 1986, "Experimental Investigation of Centrifugal Fan Noise by Use of Resonator and Theoretic Analysis of Resonance Frequency," Proceedings of Internoise '86 Congress, pp. 199-203.
  18. Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. and Kim, C. K., 2009, "Acoustic Metamaterial with Negative Density," Physics Letters A, Vol. 373, No. 48, pp. 4464-4469. https://doi.org/10.1016/j.physleta.2009.10.013
  19. Lee, S. H., Park, C. M., Seo, Y. M., Wang Z. G. and Kim, C. K., 2009, "Acoustic Metamaterial with Negative Modulus," Journal of Physics : Condensed Matter, Vol. 21, No. 17, pp. 175704-1-4. https://doi.org/10.1088/0953-8984/21/17/175704
  20. Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C. and Sheng, P., 2010, "Acoustic Metamaterial Panels for Sound Attenuation in the 50-1000Hz Regime," Applied Physics Letter, Vol. 96, No. 4, pp. 041906-1-3. https://doi.org/10.1063/1.3299007
  21. Field, C.D. and Fricke, F. R., 1998, "Theory and Applications of Quarter-Wave Resonators: A Prelude to Their Use for Attenuating Noise Entering Buildings Through Ventilation Openings," Applied Acoustics, Vol. 53, No.1, pp. 117-132. https://doi.org/10.1016/S0003-682X(97)00035-2