DOI QR코드

DOI QR Code

Numerical Modeling of Physical Property and Electrochemical Reaction for Solid Oxide Fuel Cells

고체 산화물 연료전지를 위한 물성치 및 전기화학반응의 수치해석 모델링

  • Park, Joon-Guen (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Sun-Young (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Bae, Joong-Myeon (Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2010.02.01

Abstract

Solid oxide fuel cells (SOFCs) are commonly composed of ceramic compartments, and it is known that the physical properties of the ceramic materials can be changed according to the operating temperature. Thus, the physical properties of the ceramic materials have to be properly predicted to develop a highly reliable simulation model. In this study, several physical properties that can affect the performance of SOFCs were selected, and simulation models for those physical properties were developed using our own code. The Gibbs free energy for the open circuit voltage, exchange current densities for the activation polarization, and electrical conductivity for the electrolyte were calculated. In addition, the diffusion coefficient-including the binary and Knudsen diffusion mechanisms-was calculated for mass transport analysis at the porous electrode. The physical property and electrochemical reaction models were then simulated simultaneously. The numerical results were compared with the experimental results and previous works studied by Chan et al. for code validation.

고체산화물연료전지는 세라믹 물질로 이루어지며, 세라믹 물질의 물성치는 작동조건에 따라 달라진다. 따라서, 높은 신뢰성을 가지는 시뮬레이션 모델을 개발하기 위해서는 세라믹 물질의 물성치를 정확하게 예측할 수 있어야한다. 본 논문에서는 고체산화물연료전지의 성능에 영향을 미치는 여러가지 물성치를 선택하고 그 물성치를 위한 시뮬레이션 모델이 개발되었다. 개회로전압을 위한 깁스에너지, 활성화손실을 위한 교환전류밀도, 저항손실을 위한 전기전도도가 계산되었다. 또한, 다공성 전극 내부의 물질전달 해석을 위해서 분자확산과 누센확산을 함께 고려하는 유효확산계수가 계산되었다. 이러한 계산과정 후에 물성치 모델과 전기화학반응 모델이 동시에 시뮬레이션 되었다. 해석코드의 검증을 위해서 전산해석 결과는 실험결과 및 Chan 등에 의해서 수행된 이전 연구결과와 비교되었다.

Keywords

References

  1. Ji, H., Lim, S., Bae, J. and Yoo, Y., 2006, "A Study on Operation Characteristics of Planar-Type SOFC System Integrated with Fuel Processor," KSME-B, Vol. 30, No. 8, pp. 731-740. https://doi.org/10.3795/KSME-B.2006.30.8.731
  2. Park, K. and Bae, J., 2008, "Performance Behavior by $H_2$ and CO as a Fuel in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC)," KSME-B, Vol. 32, No. 12, pp. 963-969. https://doi.org/10.3795/KSME-B.2008.32.12.963
  3. Hyun, H.-C., Sohn, J.-L., Lee, J.-S. and Ro, S.-T., 2002, "Performance Predictions of the Planar-Type Solid Oxide Fuel Cell with Computational Flow Analysis (I)," KSME-B, Vol. 27, No. 5, pp. 635-643. https://doi.org/10.3795/KSME-B.2003.27.5.635
  4. Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y. and Nagata, S., 2000, "Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions," Solid States Ionics, Vol. 132, No. 3, pp. 297-308. https://doi.org/10.1016/S0167-2738(00)00645-7
  5. Calise, F., Dentice d'Accadia, M, Palombo, A. and Vanoli, L., 2008, "One-Dimensional Model of a Tubular Solid Oxide Fuel Cell," J. Fuel Cell Sci. Technol., Vol. 5, No. 2, pp. 1-15.
  6. Zhu, H. and Kee, R.J., 2003, "A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies," J. Power Sources, Vol. 117, No. 1-2, pp. 61-74. https://doi.org/10.1016/S0378-7753(03)00358-6
  7. Kim, J.-W., 1999, "Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells," J. Electrochem. Soc., Vol. 146, No. 1. pp. 69- 78. https://doi.org/10.1149/1.1391566
  8. O'Hayre, R., Cha, S.-W., Colella, W. and Prinz, F.B., 2006, Fuel Cell Fundamentals, 1st ed., WILEY, New York.
  9. Sunden, B. and Faghri, M., 2005, Transport Phenomena in Fuel Cells, 1st ed., WIT press, Boston.
  10. Larminie, J. and Dicks, A., 2003, Fuel Cell Systems Explained, 2nd ed., WILEY, New York.
  11. Chan, S.H., Khor, K.A. and Xia, Z.T., 2001, "Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness," J. Power Sources, Vol. 93, No. 1-2, pp. 130-140. https://doi.org/10.1016/S0378-7753(00)00556-5
  12. Steele, B.C.H., 1994, "Oxygen Transport and Exchange in Oxide Ceramics," J. Power Sources, Vol. 49, No. 1, pp. 1-14. https://doi.org/10.1016/0378-7753(93)01789-K
  13. Costamagna, P. and Honegger, K., 1998, "Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization," J. Electrochem. Soc., Vol. 145, No. 11, pp. 3995-4007. https://doi.org/10.1149/1.1838904
  14. Koide, H., Someya, Y., Yoshida, T. and Maruyama, T., 2000, "Properties of Ni/YSZ Cermet as Anode for SOFC," Solid States Ionics, Vol. 132, No. 3, pp. 253-260. https://doi.org/10.1016/S0167-2738(00)00652-4
  15. Ahmed, S., McPheeters, C. and Kumar, R., 1991, "Thermal-Hydraulic Model of a Monolithic Solid Oxide Fuel Cell," J. Electrochem. Soc., Vol. 138, No. 9, pp. 2712-2718. https://doi.org/10.1149/1.2086042
  16. Zhao, F. and Virkar, A.V., 2005, "Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters," J. Power Sources, Vol. 141, No. 1, pp. 79-95. https://doi.org/10.1016/j.jpowsour.2004.08.057
  17. Kilner, J.A., 2000, "Fast Oxygen Transport in Acceptor Doped Oxides," Solid States Ionics, Vol. 129, No. 1, pp. 13- 23. https://doi.org/10.1016/S0167-2738(99)00313-6
  18. Kwon, O.H. and Choi, G.M., 2006, "Electrical Conductivity of Thick Film YSZ," Solid State Ionics, Vol. 177, No. 35, pp. 2057-3063.
  19. Suwanwarangkul, R., Croiset, E., Fowler, M.W., Douglas, P.L., Entchev, E. and Douglas, M.A., 2003, "Performance Comparison of Fick's, Dusty-Gas and Stefan-Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode," J. Power Sources, Vol. 122, No. 1, pp. 9-18. https://doi.org/10.1016/S0378-7753(02)00724-3
  20. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., 2002, Transport Phenomena, 2nd ed., WILEY, San Francisco.

Cited by

  1. Mass Transfer Analysis of Metal-Supported and Anode-Supported Solid Oxide Fuel Cells vol.34, pp.3, 2010, https://doi.org/10.3795/KSME-B.2010.34.3.317