• Title/Summary/Keyword: 능동 소음제어

Search Result 592, Processing Time 0.031 seconds

A Study on the Active Noise Cancellation System in a Vehicle Cabin Using the Weighting Factors of Control Error Path (제어오차계의 가중치를 이용한 차실내 능동소음제어 시스템 연구)

  • 홍석윤;허현무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • The active noise cancellation system showing the effective convergence and stability has been studied by simplifying the controller structures using the weighting factors of control error path to the multi-channel filtered-x LMS algorithm which needs a lot of calculations and the performance has been verified experimentally. Besides, to implement the system performance in a vehicle cabin, experimental work for selecting the suitable numbers and positions of the microphones and speakers was accomplished. Effectively combining a TMS 320C 31 main processor conducting real number calculations and having various functions with other components, the purpose-built system board for active noise cancellation has been designed and with this board, car active noise cancellation system showing maximum stable 10dB noise reduction has been obtained at the car idling conditions above 3000rpm range.

  • PDF

fictive Noise Control of Enclosed Sound Field Using LQR Controller (LQR 제어기를 이용한 밀폐음장의 능동소음제어)

  • 유우열;김우영;황원걸;이유엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • To control the noise of an enclosed sound field, we built a state space model using the acoustic modal parameter description. Using the state space model, we can investigate the controllability and observability, and find an appropriate position of control speaker and microphone to control sound field of the enclosed space. We implemented LQR(linear quadratic regulator) controller and reduced order observer to reduce the first acoustic mode. Experiments showed satisfactory results of 4∼10 dB reduction of magnitude of the first acoustic mode, and support the feasibility of the proposed scheme to lightly damped acoustic field.

Active Control of Noise Transmitted through a Window of Enclosures (음향 인클로저의 환기창을 통한 투과소음 능동제어)

  • Ji, Sumin;Hong, Chinsuk;Jung, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.670-672
    • /
    • 2014
  • In this study, we investigate active control of noise transmitted through a window of enclosures minimizing the acoustic power. To reduce noise of the enclosures, passive methods with absorbing material are generally used. The passive methods, however, are limited use due to the vantilation windows. In this case, these windows are path of noise leakage. Feedforward active noise control technology is applied to minimize the sound power from the enclosure. The feedforward controller is implemented with FIR filter based on the transfer functions calculated numerically. The controller reflects the delay due to FIR filter. The noise transmitted through the window is actively controlled, and the reduction of the power is obtained by 15dB.

  • PDF

Active Noise Control of Ducts Using the FXLMS Algorithms (FXLMS 알고리듬을 이용한 덕트의 능동소음제어)

  • Ryu, Kyung-Wan;Hong, Chin-Suk;Jeong, Wei-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-34
    • /
    • 2009
  • This paper investigates active noise control of ducts using filtered-x least mean square(FXLMS) algorithms to reduce noise transmission. Single channel FXLMS(SFXLSM) and multiple channel FXLMS(MFXLMS) algorithms are used to implement the active control systems. The transmission loss is significantly increased by SFXLMS but the sound pressure level(SPL) at the upstream of the error sensor is increased while that of downstream is very low. This increase of the upstream SPL causes the duct wall to vibrate and so to radiate noise. To prevent the wall vibration generated by the sound field upstream, global sound field control is required. To reduce SPL globally along the duct, active noise control using MFXLMS is implemented. We can then be obtained globally reduced SPL. It is found experimentally that the vibration level, and so the radiated noise level, can be reduced by the active noise control using MFXLMS.

Active Vibration Control Using Piezostack Based Mount (압전작동기 마운트를 이용한 능동진동제어)

  • Nguyen, Vien-Quoc;Choi, Sang-Min;Paeng, Yong-Seok;Han, Young-Min;Choi, Seung-Bok;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.386-392
    • /
    • 2008
  • This paper presents active vibration control performance of a hybrid mount. The proposed hybrid mount is devised by adopting both piezostack as an active actuator and rubber as a passive element. After experimentally identifying actuating force characteristics of the piezostack and dynamic characteristics of the rubber, the hybrid mount was designed and manufactured. Subsequently, a vibration control system with a specific mass loading is constructed, and its governing equations of motion are derived. In order to actively attenuate vibration transmitted from the base, a feedforward controller is formulated and experimentally realized. Vibration control responses are then evaluated in time and frequency domains.

A Double Loop Control Model Using Leaky Delay LMS Algorithm for Active Noise Control (능동소음제어를 위한 망각형 지연 LMS 알고리듬을 이용한 이중루프제어 모델)

  • Kwon, Ki-Ryong;Park, Nam-Chun;Lee, Kuhn-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.28-36
    • /
    • 1995
  • In this paper, a double loop control model using leaky delay LMS algorithm are proposed for active noise control. The proposed double loop control model estimates the loudspeaker characteristic and the error path transfer function with on-line using only gain and acoustic time delay to reduce computation burden. The control of error signal through double loop control scheme makes the more robust cntrol system. The input signal of filter to estimate acoustic time delay is used difference between input signal of input microphone and adaptive filter output. And also, in nonstationary environments, the leaky delay LMS algorithm is employed to counteract parameter drift of delay LMS algorithm. For practical noise signal, the proposed double loop control model reduces noise level about 12.9 dB.

  • PDF