• Title/Summary/Keyword: 노출 바닥판

Search Result 17, Processing Time 0.029 seconds

Penetration of De-icing Salt in Bare Concrete Bridge Decks in Highways (고속도로 콘크리트 노출 바닥판에서의 제설 염화물의 침투 특성)

  • Suh, Jin Won;Ku, Bon Sung;Rhee, Ji Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • In 1980s, a number of bridges with bare concrete deck were constructed on the Korea highway. After 20 years service, many bare concrete decks are still in good condition without special maintenance activity. Therefore, the application of the bare concrete deck is being reestimated from the view of construction and maintenance. As a part of the program, the characteristic of penetration(surface chloride and apparent diffusion coefficient) of de-icing salt into bare concrete bridge deck was analyzed in order to predict the service life of bridge on Korea highway.

Bridge Deck Overlay Technology Using High Performance Concrete (고성능 콘크리트를 활용한 교량 교면포장 기술)

  • Park, Hae-Geun;Won, Jong-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1113-1116
    • /
    • 2008
  • The application of High Performance Concrete (HPC) for protecting bridge deck concrete with micro-silica, fly-ash and ground granulated blast-furnace slag was introduced to North America in the early 1980's. This report introduces the literature reviews of high performance concrete for protecting concrete bridge deck and explains 2-different types of construction methods using this materials. One is high performance concrete overlay method and the other is full depth bridge deck method. Both methods have been successfully applied and demonstrated in north america. Especially, modified high performance concrete overlay method including silica-fume and PVA fiber has been successfully applied in korea also. Therefore, both methods that high performance concrete overlay and full depth bridge deck are considered as reasonable bridge deck protecting methods compared with the conventional bridge deck system using asphalt modified materials.

  • PDF

The Proposal of Efficient Inspection for Concrete Bridge Decks has Asphalt Overlay (교면포장을 갖는 교량 바닥판의 효율적인 점검방법 제안)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Park, Chang-Ho;Shin, Jae-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.157-160
    • /
    • 2008
  • Bridge decks are directly exposed to traffic loads and environmental conditions like rainfall water and de-icing chemicals. In this reason, there are often observed the deteriorations of asphalt overlay and concrete deck. In this study, 32 concrete decks were evaluated by the road inspection vehicle and the GPR mounted on the vehicle. The GPR could detect the deteriorations of concrete decks under asphalt overlay, even though the asphalt overlay looks like soundness. Therefore, for the efficient maintenance of concrete bridge decks, GPR examination should be performed with visual inspection.

  • PDF

Case Study on the Void Characteristics of Concrete Bridge Decks on the Expressway (공용중인 교량 바닥판의 내구성에 공극특성이 미치는 영향)

  • Suh, Jin-Won;Rhee, Ji-Young;Kim, Hong-Sam;Lee, Byeong-Ju;Shin, Do-Chul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.425-428
    • /
    • 2008
  • Concrete bridge decks, as well as asphalt pavement, are directly exposed to traffic loads and environmental conditions like rain water and deiceing chemicals. In this reason, there are often observed the deteriorations of asphalt overlay and of concrete deck under pavement. In this reason, it is important to identify the clear cause of concrete quality from a practical point of view. Therefore, in this paper it was initiated to ultimately suggest a protocol offering guidance as to assurance the quality control of concrete bridge deck on the part of void characteristics of concrete. Examinations such as visual inspection, deteriorated depth, and various void characteristic performed from cored specimens of 19 concrete bridge decks of various local conditions on the expressway. This paper discuss that the bridge deck condition analyses from the testing results were compared to a foreign guide line.

  • PDF

Condition Evaluation of Bare Concrete Bridge Decks (콘크리트 노출 교량 바닥판의 상태평가 기법)

  • Suh, Jin-Won;Rhee, JI-Young;Seo, Sang-Gil;Shin, Jae-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2004
  • In 1980's, the concrete bridge decks were constructed with 4cm wearing surface layer instead of asphalt concrete overlays. After about 15 year service periods, deteriorations were appeared on the surfaces of highway bridge decks. Various field NDTs and lab tests were done to analysis the cause of the deterioration on the concrete deck surface. The main cause was the corrosion of rebars with thinner concrete top cover than the design value. The rebars with thinner concrete top cover was earlier corroded by penetrated chloride ions. If the appropriate top cover could be achieved, the bare concrete bridge decks can be used without earlier deteriorations.

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.

Economic Analysis of Concrete Panel Replacement of PSC Bridge with Embedded Demountable Shear Connector (매립형 분리식 전단연결재를 적용한 PSC교 콘크리트 바닥판 교체공사의 경제성 분석)

  • Soon-Hwan, Lee;Jong-Eon, Kim;Jae-Gyu, Kim;Se-Hyun, Park;Dae-Sung, Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.376-385
    • /
    • 2022
  • The embedded demountable shear connector was developed in preparation for replacement works due to deterioration and damage to the bridge panel of the PSC girder bridge which is a road infrastructure directly related to the safety and convenience of the people. The demountable shear connector minimizes crushing works in the demolition process of the panel, and it is easy to re-construct the shear connector for replacement work. The economic feasibility of the PSC girder bridge using the embedded demountable shear connector compared to the existing construction method was analyzed from the perspective of road users (people) by calculating and comparing the cost of road users caused by traffic blocking during each construction method.

An Experimental Study on the Bending Behaviour of Steel Grid Composite Deck (격자형 강합성 바닥판의 휨거동에 대한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.175-184
    • /
    • 2011
  • To take advantage of reduced on-site construction periods and minimize traffic impacts various types of steel grid composite deck have been developed since 1930's. Modular prefabricated unfilled grid decks permit a long-distance transportation and construction under unfavorable condition, for example, in mountainous regions due to its comparatively light-weighter structure than fully filled grid deck. In this study bending tests of unfilled grid decks for the deck member of various kinds of infrastructure are carried out, bending strength and behaviour of composite action are experimentally evaluated. In this bending test, design variables are considered, such as type of shear connection between steel grid and concrete slab, spacing between cross bars and thickness of concrete slab. Through test results bending strength and behaviour of composite action are evaluated, reference data for proper type of shear connection and other details of the deck, such as spacing between cross bars, are obtained.

An Experimental Study for Improving the Durability of Concrete Bridge Decks (교량 바닥판 콘크리트의 내구성 증진을 위한 실험적 연구)

  • Suh, Jin-Won;Rhee, Ji-Young;Ku, Bon-Sung;Shin, Do-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.393-399
    • /
    • 2007
  • Concrete bridge decks are directly exposed to the severe environmental conditions such as rain water and deicing chemicals resulting in the freeze-thaw action and the rebar corrosion during their service lift. These deteriorations of bridge decks shorten the service lift and consequently they are the major concerns of the maintenance. The high performance concrete (HPC) deck is proposed as the alternative to minimize the deterioration problems. To develop more durable concrete deck, the performance characteristic tests of HPC mixtures were carried out. In this study, 4 different concrete mixtures were used varying the mineral admixtures as the cement replacement; ordinary portland cement (OPC), 20% fly ash (FA),20% fly ash with 4% silica fume (FS), and 40% ground granulated blast-furnace slag (BS). The design compressive strengths of HPC specimens were 27 MPa and 35 MPa, respectively. The results showed that the compressive strength of concrete did not much affect the durability of concrete. HPC with fly ash and silica lune (FS) were turned out to have the good durability and crack resistance.

A Study on Long-Term Mechanical Properties and Durability in Metakaolin Concrete Bridge Deck (메타카올린 콘크리트 교량바닥판의 장기 역학적 특성 및 내구성에 관한 연구)

  • Yang, Eun Ik;Kim, Myung Yu;Yang, Joo Kyoung;Park, Hae Geun;Choi, Yoon Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.125-133
    • /
    • 2011
  • The requirement for durability of concrete bridge deck is increasing as the deterioration for the concrete bridge deck exposed to severe environment has been increased. For this reason, the concern about high-durable concrete is being high. Recently, a metakaolin is highly spotlighted as new admixture because its strength and durability are equivalent to silica fume. On the other hands, there are few researches for the metakaolin concrete bridge deck in domestic. So many various long-term data on the mechanical property and durability is needed to apply metakaolin concrete at the concrete bridge deck construction field. This study is aim to evaluate the long-term mechanical properties and durability of metakaolin concrete bridge deck with curing age. Mechanical properties are estimated by the compressive and flexural strength, and the drying shrinkage, the chloride resistance, the scaling, and freezing and thawing characteristics are compared with curing age. According to the results, when the metakaolin concrete is used, the development of compressive and flexural strength proceed in both the early and old ages. It is also improved the resistance of chloride penetration, freezing and thawing in concrete. It was showed that replacement of metakaolin was efficient for the reduction of the drying shrinkage.