x선 영상은 각종 의료 검진 분야와 보안검사에 널리 이용되고 있다. 하지만 대부분의 x선 영상은 잡음을 포함하고 있으며 이러한 잡음은 x선 영상분석에 방해가 되기 때문에 x선 영상의 잡음을 제거할 필요가 있다. 본 논문은 화소값 가중치와 화소 거리 가중치를 이용하여 x선 영상의 잡음을 제거하는 방법을 제안한다. 제안하는 알고리즘은 먼저 양방향 필터를 이용하여 x선 영상의 노이즈를 1차적으로 제거하고 원본 x선 영상의 경계 영역을 추정한다. 그 후 현재 화소가 경계 영역에 속한다면 해당화소를 포함하는 $3{\times}3$ 영역의 화소들에 대한 원본화소와 노이즈제거 화소를 이용하여 가중치를 구하고 경계 화소값 결정을 위한 비용계산을 수행한다. 그 후 가장 작은 경계 화소값 결정 비용을 가지는 화소 값을 결과영상의 화소값으로 정한다. 제안하는 알고리즘은 PSNR 및 주관적 화질 비교에서 우수한 성능을 보였다.
ES(Exponentially weighted Stepsize) 알고리즘을 이용한 기존의 음향 반향 제거기는 동작 구조가 간단하고, NLMS 알고리즘에 비해 빠른 수렴 속도를 갖지만, 외부 잡음에 약하다. 그 이유는 ES 알고리즘은 특정 음향학적 조건에서 결정된 공간 임펄스 응답의 평균 에너지 감쇄율을 이용해 필터의 탭을 업데이트하기 때문이다. 본 논문에서는 Stepsize 생성기와 선택기를 추가한 새로운 구조의 음향 반향 제거기를 제안하였다. 제안된 Stepsize 생성기와 선택기는 외부 노이즈에 대한 기존의 음향 반향 제거기의 단점을 개선하여, 음향 반향 제거 시스템의 강건함을 향상시켜준다. Stepsize 생성기는 이동 평균기를 이용하여 별도의 Stepsize 값을 생성한다. 이 때 생성된 Stepsize 값은 잔여 에러양의 에너지 값에 상수 ${\gamma}$를 곱해준 결과이다. Stepsize 선택기는 계수 선택 요소${\Delta}_{differ}$를 이용해 음향 반향 제거기가 좀 더 향상된 성능을 갖을 수 있는 Stepsize 값을 선택한다. 본 논문의 시뮬레이션 결과는 외부 노이즈의 SNR에 관계없이 제안된 알고리즘은 잔여 에러양을 5[dB]에서 10[dB]정도 저하시켰고, 조절 오차의 양도 크게 개선되었음을 보여준다.
최근 VR/AR, 자율주행차 등 다양한 응용분야가 주목 받으며 Time of Flight (ToF) 카메라와 같은 사물과 카메라 간의 거리를 측정할 수 있는 3D 카메라를 활용한 연구가 활발히 진행되고 있다. 정확한 영상 정보를 획득하기 위해, ToF 카메라 센서에 의해 발생할 수 있는 노이즈를 모델링하는 것은 필수적이다. 본 논문에서 우리는 ToF 카메라 센서에 의해 발생하는 노이즈를 모델링하기 위해 Skellam 분포를 도입한다. 연속하는 거리 영상의 픽셀 차에 대한 분포를 분석함으로써 Skellam 분포 적용의 타당성을 제시한다. ToF 카메라의 노이즈 모델링을 통해 ToF 카메라 센서에 발생하는 노이즈를 제거하고 출력 영상의 품질을 향상시킬 것으로 기대한다.
사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.
VVC(Versatile Video Coding)는 YUV 입력 영상에 대하여 Luma 성분과 Chroma 성분에 대하여 각각 다른 최적의 방법으로 블록분할 후 해당 블록에 대해서 화면 내 예측 또는 화면 간 예측을 수행하고, 예측영상과 원본영상의 차이를 변환, 양자화하여 압축한다. 이 과정에서 복원영상에는 블록화 노이즈, 링잉 노이즈, 블러링 노이즈 발생한다. 본 논문에서는 인코더에서 원본영상과 복원영상의 잔차신호에 대한 MAE(Mean Absolute Error)를 추가정보로 전송하여 이 추가정보와 복원영상을 이용하여 Deep Learning 기반의 신경망 네트워크로 영상의 품질을 높이는 방법을 제안한다. 복원영상의 노이즈를 감소시키기 위하여 영상을 $32{\times}32$블록의 임의로 분할하고, DenseNet기반의 UNet 구조로 네트워크를 구성하였다.
단순전력분석(Simple Power Analysis, SPA)은 적은 수의 평문으로 암호 알고리즘에 대한 패턴 뿐만 아니라 비밀키의 정보를 찾는 전력 분석(Power Analysis)의 방법 중 하나이다. SPA의 장점은 차분전력분석(Differential Power Analysis, DPA) 또는 상관전력분석(Correlation Power Analysis, CPA)보다 적은 계산량으로 비밀키 분석을 할 수 있고, DPA 또는 CPA 분석을 하기 위해 필요한 분석위치 탐지에 효율적으로 활용이 되어 진다는 것이다. 하지만 최근 SPA 분석 성능을 저하시키기 위해 클락 노이즈, 전력 노이즈, 딜레이 노이즈 등 다양한 방법들이 제안되어지고 있다. 본 논문에서는 다양한 노이즈가 있는 환경에서 아날로그 수신기를 활용하여 특정 주파수 영역을 필터링한 후 노이즈를 제거하는 방법을 소개한다. 실험을 통해, 아날로그 수신기를 사용하였을 경우에 사용하지 않았을 경우보다 뚜렷한 대칭키 암호의 라운드 함수가 구분되어지며, 라운드 내 함수 구분도 가능함을 보인다. 이는 DPA 또는 CPA를 이용하여 분석을 수행하고자 할 때 분석 위치를 결정하데 아주 유용하게 활용되어지며, 분석 성능향상에도 기여할 것으로 기대되어진다.
본 연구는 환경 요인이 통제되어 있는 실험실 데이터에 산업 현장에서 발생하는 유사 잡음을 노이즈로 추가하였을 때, SNR비에 따른 노이즈별 STFT Log Spectrogram, Mel-Spectrogram, CWT Spectrogram 총 3가지의 이미지를 생성하고, 각 이미지를 입력으로 한 CNN 결함 분류 모델의 성능 결과를 확인하였다. 원본 데이터의 영향력이 큰 0db 이상의 SNR비로 합성할 경우 원본 데이터와 분류 결과상 큰 차이가 존재하지 않았으며, 노이즈 데이터의 영향이 큰 0db 이하의 SNR비로 합성할 경우, -20db의 STFT 이미지 기준 약 26%의 성능 저하가 발생하였다. 또한, Wiener Filtering을 통한 디노이징 처리 이후, 노이즈를 효과적으로 제거하여 분류 성능의 결과가 높아지는 점을 확인하였다.
본 연구에서는 기존의 노이즈 제거 알고리즘을 적용한 영역 확장 기반의 분할 방법과 U-Net을 이용한 분할 방법의 성능을 정량적 평가인자를 이용하여 비교평가 하고자 하였다. 먼저, 전산화단층검사 영상에 median filter, median modified Wiener filter, fast non-local means algorithm을 모델링하여 적용한 뒤 영역 확장 기반의 분할을 수행하였다. 그리고 U-Net 기반의 분할 모델로 훈련을 진행하여 분할을 수행하였다. 그 후, 노이즈 제거 알고리즘을 사용한 경우와 U-Net을 사용한 경우의 분할 성능을 비교 평가하기 위해 평균 제곱근 편차 (root mean square error, RMSE), 최대 신호 대 잡음비 (peak signal to noise ratio, PSNR), universal quality image index (UQI), 그리고 dice similarity coefficient (DSC)를 측정하였다. 실험 결과, U-Net을 이용하여 분할을 수행했을 때 분할 성능이 가장 향상되었다. RMSE, PSNR, UQI, 그리고 DSC 값은 각각 약 0.063, 72.11, 0.864, 그리고 0.982로 noisy한 영상에 비해 각각 1.97배, 1.09배, 5.30배, 그리고 1.99배 개선된 것을 확인할 수 있었다. 결론적으로, 전산화단층검사영상에서 U-Net이 노이즈 제거 알고리즘에 비해 분할 성능 향상에 효과적임을 입증하였다.
본 논문은 처리속도와 호환성을 고려하여 DSP프로세서를 이용한 영상의 임펄스 노이즈 제거 필터 설계에 관한 연구이다. 시스템의 하드웨어 구현은 32비트 DSP 독립타겟보드 및 CCD 카메라에서 NTSC 영상의 입력을 획득하는 비전보드로 구성되며 시스템 제어를 위한 호스트 컴퓨터로 구성된다. 디노이징 기법은 적응 미디언 필터를 적용하였다. 실험결과 90%와 PSNR 22㏈정도의 제거 효과가 있다.
본 논문은 지상에서 발생하는 전자파 잡음 신호의 유입에 의해 많은 영향을 받을 수 있는 헬기 등 항공기의 레이더경보수신기(Radar Warning Receiver)에서도 레이더 펄스 신호를 탐지할 수 있는 통신전자파잡음 동적제거 기법을 제안하였다. 본 논문은 지상의 노이즈 신호를 분류하는 방법을 제시하였고, 노이즈 신호 레벨을 판단하여 효과적으로 잡음을 제거하는 알고리즘을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.