Noise-Reduction of Student's Learning Data using k-NN Method

k-NN 기법을 이용한 학습자 데이터의 노이즈 선별 방법

  • 윤태복 (성균관대학교 창의적 설계추론 지적 교육 시스템 연구단) ;
  • 이지형 (성균관대학교 정보통신공학부) ;
  • 정영모 (성균관대학교 창의적 설계추론 지적 교육 시스템 연구단) ;
  • 차현진 (성균관대학교 창의적 설계추론 지적 교육 시스템 연구단) ;
  • 박선희 (성균관대학교 창의적 설계추론 지적 교육 시스템 연구단) ;
  • 김용세 (성균관대학교 창의적 설계추론 지적 교육 시스템 연구단)
  • Published : 2006.11.17

Abstract

사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

Keywords