The epistemological obstacles in the area learning of plane figure can be categorized into two types that is closely related to an attribute of measurement and is strongly connected with unit square. First, reasons for the obstacle related to an attribute of measurement are that 'area' is in conflict. with 'length' and the definition of 'plane figure' is not accordance with that of 'measurement'. Second, the causes of epistemological obstacles related to unit square are that unit square is not a basic unit to students and students have little understanding of the conception of the two dimensions. Thus, To overcome the obstacle related to an attribute of measurement, students must be able to distinguish between 'area' and 'length' through a variety of measurement activities. And, the definition of area needs to be redefined with the conception of measurement. Also, the textbook should make it possible to help students to induce the formula with the conception of 'array' and facilitate the application of formula in an integrated way. Meanwhile, To overcome obstacles related to unit square, authentic subject matter of real life and the various shapes of area need to be introduced in order for students to practice sufficient activities of each measure stage. Furthermore, teachers should seek for the pedagogical ways such as concrete manipulable activities to help them to grasp the continuous feature of the conception of area. Finally, it must be study on epistemological obstacles for good understanding. As present the cause and the teaching implication of epistemological obstacles through the research of epistemological obstacles, it must be solved.
Journal of Elementary Mathematics Education in Korea
/
v.13
no.1
/
pp.115-140
/
2009
Freudenthal has advocated the mathematisation theory. Mathematisation is an activity which endow the reality with order, through organizing phenomena. According to mathematisation theory, the departure of children's learning of mathematics is not ready-made formal mathematics, but reality which contains mathematical germination. In the first place, children mathematise reality through informal method, secondly this resulting reality is mathematised by new tool. Through survey, it turns out that area unit of Korea's seventh elementary mathematics textbook is not correspond to mathematisation theory. In that textbook, the area formular is hastily presented without sufficient real context, and the relational understanding of area concept is overwhelmed by the practice of the area formular. In this thesis, first of all, I will reconstruct area unit of seventh elementary textbook according to Freudenthal's mathematisation theory. Next, I will perform teaching experiment which is ruled by new lesson design. Lastly, I analysed the effects of teaching experiment. Through this study, I obtained the following results and suggestions. First, the mathematisation was effective on the understanding of area concept. Secondly, in both experimental and comparative class, rich-insight children more successfully achieved than poor-insight ones in the task which asked testee comparison of area from a view of number of unit square. This result show the importance of insight in mathematics education. Thirdly, in the task which asked testee computing area of figures given on lattice, experimental class handled more diverse informal strategy than comparative class. Fourthly, both experimental and comparative class showed low achievement in the task which asked testee computing area of figures by the use of Cavalieri's principle. Fifthly, Experiment class successfully achieved in the area computing task which resulting value was fraction or decimal fraction. Presently, Korea's seventh elementary mathematics textbook is excluding the area computing task which resulting value is fraction or decimal fraction. By the aid of this research, I suggest that we might progressively consider the introduction that case. Sixthly, both experimental and comparative class easily understood the relation between area and perimeter of plane figures. This result show that area and perimeter concept are integratively lessoned.
본 연구에서는 사면체의 부피를 구하는 두 가지 공식을 다룰 것이며, 이들은 외형적으로 또는 계산 방법상으로 삼각형의 넓이를 구하는 헤론의 공식과 유사하다. 이들 중에서 하나는 사면체의 모서리와 평면각들을 이용하여 사면체의 부피를 표현하며, 다른 하나는 사면체의 모서리들만 이용하여 부피를 표현한 것으로 2002년에 미해결 탐구 문제로 제시된 바 있다. 본 연구에서는 헤론 공식과 이들 두 공식의 유사점에 대해 논의하며, 모서리들만을 이용하여 부피를 구하는 공식에 대한 새로운 기초적인 증명 방법을 제시할 것이다.
This study suggests that it is necessary to prove that the values of three areas of a triangle, which are obtained by the multiplication of the respective base and its corresponding height, are the same. It also seeks to deeply understand the meaning of Area formula of triangles by exploring some questions raised in the analysis of the proof. Area formula of triangles expresses the invariance of congruence and additivity on one hand, and the uniqueness of parallel line, one of the characteristics of Euclidean geometry, on the other. This discussion can be applied to introducing and developing exploratory learning on area in that it revisits the ordinary thinking on area.
Formula for the area of a trapezoid is an educational material that can handle algebraic and geometric perspectives simultaneously. In this note, we will make up the expression equivalent algebraically to the formula for the area of a trapezoid, and deal with the conversion of a geometric point of view, in algebraic terms of translating and interpreting the expression geometrically. As a result, the geometric conversion model, the first algebraic model, the second algebraic model are obtained. Therefore, this problem is a good material to understand the advantages and disadvantages of the algebraic and geometric perspectives and to improve the mathematical insight through complementary activity. In addition, these activities can be used as material for enrichment and gifted education, because it helps cultivate a rich perspective on diverse and creative thinking and mathematical concepts.
The purpose of this study is to investigate mathematics content knowledge(MCK) of pre-service teachers about the area of a circle. 53 pre-service teachers were asked to perform four tasks based on the central ideas of measurement for the area of a circle. The results of this study are as follows. First, pre-service teachers had some difficulty in describing the meaning of the area of a circle. Quite a few of them didn't recognize the necessity of counting the number of area units. Secondly, pre-service teachers had insufficient content knowledge about the central ideas of measurement for the area of a circle such as partitioning, unit iteration, rearranging, structuring an array and approximation. Lastly, few pre-service teachers understood the concept of actual infinity. Most students regarded the rectangle as the figure having the approximation error instead of the limitation from rearranging the parts of a circle.
Journal of Elementary Mathematics Education in Korea
/
v.9
no.2
/
pp.161-180
/
2005
The purpose of this study is to delve into how elementary mathematics textbooks deal with the areas of triangles and quadrilaterals from a viewpoint of the Didactic Transposition Theory. The following conclusion was derived about the teaching of the area concept: The area concept started to be taught perfectly in the 7th curricular textbook, and the focus of area teaching was placed on the area concept, since learners were gradually given opportunities to compare and measure areas. As to the area formulae of triangles and quadrilaterals, the following conclusions were made: First, the 1st curricular, the 2nd curricular and the 3rd curricular textbooks placed emphasis on transposition by textbooks, and the 4th curricular, the 5th curricular and the 6th curricular textbooks accentuated transposition by teachers. The 7th curricular textbooks put stress on knowledge construction by learners; Second, the focus of teaching shifted from a measurement of area to inducing learners to make area formula. Namely, the utilization of area formula itself was accentuated, while algorithm was emphasized in the past; Third, the way to encourage learners to produce area formula changed according to the curricula and in light of learners' level, but a wide range of teaching devices related to the area formulae were removed, which resulted in offering less learning chances to students; Fourth, what to teach about the areas of triangles and quadrilaterals was gradually polished up, and the 7th curricular textbooks removed one of the overlapped area formula of triangle.
With a significant role of textbooks in shaping students' opportunities to learn, textbook analysis is essential to reveal these opportunities to learn the concept of area and volume. This research aims to show how the Korean textbooks pace students' learning of area and volume across grades by scrutinizing the textbooks with students' developmental sequences, called learning trajectories. Tasks about area and volume in all Korean elementary textbooks (grade 1 to 6) are coded with the specific developmental stages suggested in learning trajectories. As a result, we find considerable misalignment between the textbooks and the learning trajectories. The textbooks provide opportunities to experience developmental progressions of area and volume later than ages suggested in the learning trajectories. In addition, learning opportunities are significantly concentrated in grade 5 for area and grade 6 for volume with heavy emphases on applying formulas of area or volume. The findings from this research provides important implications concerning design of textbooks as well as improving students' opportunities in the mathematics classrooms.
In this study, a teaching units for teaching and learning of secondary preservice teachers' mathematising is designed, focusing on reinvention of Bretschneider's formula. preservice teachers can obtain the following through this teaching units. First, preservice teachers can experience mathematising which invent a noumenon which organize a phenomenon, They can make an experience to invent Bretscheider's formula as if they invent mathematics really. Second, preservice teachers can understand one of the mechanisms of mathematics knowledge invention. As they reinvent Brahmagupta's formula and Bretschneider's formula, they understand a mechanism that new knowledge is invented Iron already known knowledge by analogy. Third, preservice teachers can understand connection between school mathematics and academic mathematics. They can understand how the school mathematics can connect academic mathematics, through the relation between the school mathematics like formulas for calculating areas of rectangle, square, rhombus, parallelogram, trapezoid and Heron's formula, and academic mathematics like Brahmagupta's formula and Bretschneider's formula.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.