• Title/Summary/Keyword: 내진장치

Search Result 177, Processing Time 0.027 seconds

Base Isolation of the 1/3 Scaled RC Building with the Laminated Rubber Bearings (적층고무형 면진 장치를 갖는 철근콘크리트 건물의 면진 특성)

  • Chang Kug-Kwan;Chun Young-Soo;Kim Dong-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.975-982
    • /
    • 2005
  • Scientific community agrees about the fact that base Isolation provides interesting solutions to minimize the seismic risk. Reliability of such a technique is nowadays proofed by a large number of applications like public buildings, nuclear plants, bridges, etc. This paper reports the results of performance verification tests of the base isolated RC building with the laminated rubber bearings which is manufactured by enterprise in Korea. The shaking table tests were performed using a three story model scaled to 1/3 of the prototype RC apartment building. Several major earthquake records were scaled to different peak ground accelerations and used as input base excitations. Especially in this study, effect of earthquake characteristics on response reduction and effect of the intensity of excitations are studied. Through the verification tests, the validity of the applied base isolaion device and the response reduction effect against earthquakes are confirmed.

Load-Displacement Relationship of Passive Vibration Units Composed with a Spring and Vibration-Proof Rubbers (스프링과 방진고무가 융합된 제진장치의 하중-변위 관계)

  • Mun, Ju-Hyun;Im, Chae-Rim;Wang, Hye-Rin;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.226-234
    • /
    • 2021
  • The objective of this study is to establish the fundamental design data for axial load-displacement relationship under axial monotonic or cyclic responses of seismic damping·isolation (SDI) units developed for ceiling structures. The main parameters include the installation of a spring, the number of rubber layer, prestress stress of bolts for connector between the spring and rubbers, and loading type. Test results showed that SDI units with a spring in the core and higher prestress stress of bolts tended to be higher stiffness at the ascending branch and more ductile behavior at the descending branch. This trends more notable for the specimens under monotonic load rather than cyclic loads. Consequently, the energy dissipation of SDI unit can be optimally designed with the following conditions: installation of a spring within 3-layer rubbers and prestress applied to the bolts at 10% of their yielding strength . When compared with the experimental tension capacity of the developed SDI units, the predictions by JIS B 2704-1 and KDS 31 00 are conservative under monotonic loading but higher by approximately 10% under cyclic loading.

An Analytical Study on the Shape Development of U-shaped Steel Damper for Seismic Isolation System (면진시스템용 U형 강재댐퍼의 형상 개발에 대한 해석적 연구)

  • Quan, Chun-Ri;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2010
  • Seismic isolation is one of the most widely implemented and accepted seismic protection systems to limit or avoid damages from unforeseeable earthquakes. As an energy absorption device, however, the supplemental lead itself tends to pollute the environment. Consequently, it is predicted that the use of lead would be controlled. Considering the pollution caused by lead, several researchers are interested in the viability of using steel in place of lead. In this study, first, based on the results of a non-linear finite element analysis, the excellent deformation capacity of a very tough steel damper was demonstrated by comparing it with that of the SS400 damper and determining the effects of main parameters (the aspect ratio, thickness, and width) on the deformation capacity. Second, an optimum shape and design equation for a U-shaped damper with an opening based on stress distribution was suggested.

Life-Cycle Analysis of Nuclear Power Plant with Seismic Isolation System (면진장치 적용을 고려한 원전구조물 생애주기 분석)

  • Kim, Sunyong;Lee, Hong-Pyo;Cho, Myung-Sug
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.415-421
    • /
    • 2013
  • In order to extend the service life of a nuclear power plant(NPP) ensuring the structural safety, effective and efficient management of NPP considering structural deteriorations and various natural hazard risks has been treated as a significant tool(IAEA 1998). The systemic efforts is required to prevent the potential loss of NPPs resulting from the natural hazard including earthquakes, hurricane and flooding since the Fukushima accident. Earthquake risk of building structures can be mitigated through appropriate seismic isolation system installation. It has been known that a seismic isolation system can lead to reduction of the deleterious effect on ground motion induced by earthquakes, and structural safety can be improved. In this paper, the NPP life-cycle management is reviewed. Furthermore, effect of seismic isolation on the NPP life-cycle cost analysis with earthquake, and cost-benefit analysis in terms of life-cycle cost when applying the seismic isolation systems to NPP are introduced.

Application of Isolation System to the Lighthouse Structure (등대구조물의 면진시스템 적용방안 연구)

  • Hur, Moo Won;Chun, Young Soo;Kim, Dong Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • In this study, seismic isolation technology to the lighthouse structure is suggested and isolation effects on response reduction are studied for three types of isolation models with the proposed seismic isolation technology. A seismic isolation system is installed on the base of the lighthouse structure in model 1, on the base of the lighthouse lens in model 2, and on the base of both of them in model 3. The dynamic time history analysis verifies that in case of model 1, the earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. Also, the inter-story drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. as a results, model 1 is very effective to mitigate the influence of earthquake on structures. In model 2, isolation effects are valid but special care should be taken to failure of the non-isolated lighthouse sub-structure. In model 3, isolation effects are also valid but the effects are small. model 3 is less effective than model 1.

Seismic Response Control of Adjacent Structures by Semi-Active Fuzzy Control of Magneto-Rheological Damper (MR 감쇠기의 준능동 퍼지제어기법을 이용한 인접구조물의 지진응답제어)

  • Kim, Min-Seob;Ok, Seung-Yong;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • In this paper, a method for reducing seismic responses of adjacent buildings is studied that involves connecting two buildings with energy-dissipating devices, such as MR dampers. For the vibration control of the adjacent buildings, a fuzzy control technique with semi-active MR dampers is proposed. A fuzzy controller, which can appropriately modulate the damping forces by controlling the input voltage in real time, is designed according to the proposed method. To verify the validity of the proposed method, numerical simulations are performed. In the numerical simulations, historical earthquake records with diverse frequency contents and different peak values are used. For the purpose of comparison, an uncontrolled system, a passive control system and a semi-active fuzzy control system are considered. The comparative results prove the effectiveness of the proposed control technique, i.e. the numerical results show that the fuzzy controlled semi-active MR dampers can effectively reduce the earthquake responses of the adjacent structures.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

Evaluation on Fatigue Behavior of EP(Engineering Plastic) Friction Pendulum Bearing System (EP가 적용된 마찰 진자형 지진격리받침의 피로거동분석)

  • Choi, Jung-Youl;Park, Hee-Soo;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.703-708
    • /
    • 2020
  • As the risk of earthquakes increases recently, earthquake-resistant designs were getting interest. For this reason, this study applies that Friction pendulum-type seismic isolator is a device that attenuates seismic energy by friction and pendulum motion. The friction pendulum-type seismic isolator of this study is very easy to transport, install and maintain with light weight of metal by applying the slider using high strength engineering plastic. In addition, there is an advantage that the corrosion resistance is very excellent compared to the existing metal parts. However, there is concern about long-term durability by replacing metal materials. In this study, the frictional pendulum-type seismic isolator with EP was applied to compressive-shear test, repeated fatigue test, and ultimate load test after fatigue test, and analyzed the deformation and shear or properties after the test. As the results, the adequacy of long term fatigue durability was experimentally proven.

Experimental Study on Structural Performance of Steel Slit Damper According to Restrained Out-of-plane Deformation (면외변형 구속에 따른 강재슬릿댐퍼의 구조성능에 관한 실험적 연구)

  • Jin-Woo Kim;U-Jin Kwon;Kwang-Yong Choi;Young-Ju Kim;Hae-Yong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.86-94
    • /
    • 2023
  • In this study, a supplementary detail capable of restraining out-of-plane deformation was proposed for steel slit dampers, and a constant amplitude cyclic loading test was performed with the application of the proposed detail and the shape ratio of the damper as variables. Repeated hysteresis and cumulative plastic deformation according to the test results were analyzed. Repeated hysteresis of the slit damper with the proposed detail showed a stable spindle-shaped hysteresis within the set variable range, and no out-of-plane deformation of the damper was observed until ultimate state. It was confirmed that the restraining panel effect through the application of the proposed details is effective in terms of both the strength and deformation capacity of the damper. In addition, experimental parameters for the fatigue curve evaluation of slit dampers were derived in this study. Based on the results, it is judged that quantitative comparison of structural performance with various types of seismic devices will be possible in the future.

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension (긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석)

  • Lee, Heon-Woo;Kim, Young-Chan;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.