DOI QR코드

DOI QR Code

Characteristic Analysis of Superelastic Shape Memory Alloy Long-Lasting Damper with Pretension

긴장력이 적용된 초탄성 형상기억합금 장수명 댐퍼의 특성 분석

  • 이헌우 (인천대학교 건설환경공학과) ;
  • 김영찬 (인천대학교 산학협력단) ;
  • 허종완 (인천대학교 도시환경공학부)
  • Received : 2023.10.27
  • Accepted : 2023.11.10
  • Published : 2024.02.01

Abstract

A seismic structure is an earthquake-resistant design that dissipates seismic energy by equipping the structure with a device called a damper. As research efforts to reduce earthquake damage continue to rise, technology for isolating vibrations in structures has evolved by altering the materials and shapes of dampers. However, due to the inherent nature of the damper, there are an unescapable restrictions on the extent of plastic deformation that occurs in the material to effectively dissipate energy. Therefore, in this study, we proposed a long-life damper that offers semi-permanently usage and enhances structural performance by applying additional tension which is achieved by utilizing super elastic shape memory alloy (SSMA), a material that self-recovers after deformation. To comprehensively understand the behavior of long-life dampers, finite element analysis was performed considering the design variables such as material, wire diameter, and presence of tension, and response behavior was derived to analyze characteristics such as load resistance, energy dissipation, and residual displacement to determine the performance of long-life dampers in seismic structure. Excellence has been proven from finite element analysis results.

제진 구조는 댐퍼라는 장치를 구조물에 장착시켜 지진에너지를 소산하는 내진설계이다. 지진피해를 저감하고자 하는 연구가 성행하고 있는 가운데 제진 구조는 댐퍼의 재료, 형상을 변경함으로써 기술을 발전시켜왔다. 하지만 댐퍼의 특성상 에너지를 소산하기 위해 재료에 발생하는 소성변형은 피할 수 없는 한계가 있다. 따라서 본 연구에서는 발생한 변형를 스스로 회복할 수 있는 초탄성 형상기억합금(Superelastic shape memory alloy, SSMA)을 활용하여 반영구적으로 사용할 수 있고 추가적인 긴장력을 적용하여 구조적 성능을 향상한 장수명 댐퍼를 제안하였다. 장수명 댐퍼의 거동 특성 분석을 위해 재료, 와이어 직경, 긴장력 유무의 설계 변수에 따라 유한요소해석을 진행하였고 응답 거동을 도출하여 하중 저항, 에너지 소산, 잔류변위 등의 특성을 분석하여 장수명 댐퍼의 성능적 우수성을 입증하였다.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(grant number : RS-2023-00248140).

References

  1. Bagheri, S., Barghian, M., Saieri, F. and Farzinfar, A. (2015). "U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper." Structures, Elsevier, Vol. 3, pp. 163-171, https://doi.org/10.1016/j.istruc.2015.04.003.
  2. Ban, W. H., Hu, J. W. and Ju, Y. H. (2020). "Seismic performance evaluation of recentering braced frame structures using superelastic shape memory alloys - nonlinear dynamic analysis." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 40, No. 4, pp. 353-362, https://doi.org/10.12652/Ksce.2020.40.4.0353 (in Korean).
  3. Cho, H. M. and Hu, J. W. (2021). "Seismic performance evaluation for piloti structures of MPS seismic isolation device in response to earthquakes on the richter scale 7.0 - nonlinear dynamic analysis." KSCE Journal of Civil and Environmental Engineering Research, KSCE, Vol. 41, No. 1, pp. 13-20, https://doi.org/10.12652/Ksce.2021.41.1.0013 (in Korean).
  4. Choi, E., Nhan, B. T. and Ostadrahimi, A. (2023). "On the performance of a smart hybrid damper consisting of shape memory alloy and steel rings." Engineering Structures, Elsevier, Vol. 291, 116382, https://doi.org/10.1016/j.engstruct.2023.116382.
  5. Ghabussi, A., Marnani, J. A. and Rohanimanesh, M. S. (2020) "Improving seismic performance of portal frame structures with steel curved dampers." Structures, Elsevier, Vol. 24, pp. 27-40, https://doi.org/10.1016/j.istruc.2019.12.025.
  6. Ghaedi, K., Ibrahim, Z., Javanmardi, A. and Rupakhety, R. (2021). "Experimental study of a new bar damper device for vibration control of structures subjected to earthquake loads." Journal of Earthquake Engineering, Taylor & Francis, Vol. 25, No. 2, pp. 300-318, https://doi.org/10.1080/13632469.2018.1515796.
  7. Kim, Y. C., Lee, H. W. and Hu, J. W. (2023). "Experimental performance evaluation of elastic friction damper." Case Studies in Construction Materials, Elsevier, Vol. 18, e01823, https://doi.org/10.1016/j.cscm.2023.e01823.
  8. Krawinkler, H. (1992). Guidelines for cyclic seismic testing of components of steel structures for buildings, Report No. ATC-24, Applied Technology Council, Redwood City, CA.
  9. Mirzai, N. M., Attarnejad, R. and Hu, J. W. (2021). "Experimental investigation of smart shear dampers with re-centering and friction devices." Journal of Building Engineering, Elsevier, Vol. 35, https://doi.org/10.1016/j.jobe.2020.102018.
  10. Paronesso, M. and Lignos, D. G. (2021). "Experimental study of sliding friction damper with composite materials for earthquake resistant structures." Engineering Structures, Elsevier, Vol. 248, 113063, https://doi.org/10.1016/j.engstruct.2021.113063.
  11. Qian, H., Li, H., Song, G. and Guo, W. (2013). "Recentering shape memory alloy passive damper for structural vibration control." Mathematical Problems in Engineering, Hindawi, Vol. 2013, pp. 1-13, https://doi.org/10.1155/2013/963530.