• Title/Summary/Keyword: 내압하중

Search Result 88, Processing Time 0.027 seconds

A Study on the Ultimate Compressive Strength of Ship Plate with Local Corrosion (국부이상부식을 가진 선체판의 압괴강도에 관한 연구)

  • 고재용;남정길
    • Journal of the Korean Institute of Navigation
    • /
    • v.22 no.3
    • /
    • pp.65-72
    • /
    • 1998
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. In usual, plate element contributes to inplane stiffness against the action of inplane load. If the plate element has local corrosion, its load carrying capacity under inplane load is expected to be reduced. Until now, however, the research report concerned with this topic has not seen. In this study, a basic study which clarifies the influence of local corrosion on the ultimate collapse strength of plate element subjected to axial compression is carried out by using elasto-platic large deformation finite element analysis. In particular, influence of corrosive area, corrosive thickness and slenderness ratio of dented plate is investigated.

  • PDF

Local Deformation Based Design Concept for Multi-layered Pipeline (국부 변형을 고려한 다중관 설계 기법)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Kim, Kyu-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.570-573
    • /
    • 2011
  • 본 논문에서는 배관의 국부변형을 고려하여 각 배관의 특성으로 인하여 발생하게 되는 최대 응력 발생지점에 대한 평가 및 설계기법을 제안한다. 다중관은 일반적으로 배관의 매설 조건이 불안정한 곳이나 배관의 내부 유체의 유출 모니터링 및 난방관 등의 보온을 목적으로 사용되나, 다중관의 거동에 대한 거동 및 설계에 대한 연구는 미비한 실정이다. 본 연구에서 제안한 기법은 탄성범위에서 거동하는 연성관을 대상으로 하며 외관의 형상 및 외부 하중에 의하여 예상되는 국부 변형을 설계 인자로 고려하는 방법이다. 일반적인 원형관의 경우 관의 하단부에서 가장 큰 국부 변형 반경을 나타나며, 국내외에서 사용하고 있는 정사각 콘크리트 보호공의 경우 관의 상측, 하측부($45+90n^{\circ}$)에서 가장 큰 반경을 관찰할 수 있다. 이는 내압이 작용하는 구조물에 대하여 낮은 압력에도 항복에 이르는 환경을 제공하기 때문에 설계 시 반영되어야 할 중요한 요소이다.

  • PDF

A Study on the Nonlinear Behavior of Plate under Thrust (면내압축하중을 받는 선체판의 비선형거동에 관한 연구)

  • 고재용
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.95-110
    • /
    • 1996
  • High Tensile Steel enables to reduce the plate thickness comparing to the case when Mild Steel is used. From the economical view point this is very preferable since the reduction in the hull weight. However to use the High Tensile Steel effectively the plate thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling, buckling may be necessary. If the inplane stiffness of the plating decreases due to buckling the flexural rigidity of the cross section of a ship's hull also decreases. this may lead to excessive deflection of the hull girder under longitudinal bending. In these cases a precise estimation of plate's behavior after buckling is necessary and nonlinear analysis of isolated and stiffened plates is required for structural system analysis. In this connection this paper discusses nonlinear behaviour of thin plate under thrust. Based on the analytical method elastic large deflection analysis of isolated plate is perform and simple expression are derived to evaluate the inplane rigidity of plates subjected to uniaxial compression.

  • PDF

Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment (감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우-)

  • Shim, Do-Jun;Lim, Hwan;Choi, Jae-Boong;Kim, Young-Jin;Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

Fatigue Failure Behavior of Pipe Bends with Local Wall-Thinning Under Cyclic Bending Condition (반복굽힘 조건에서 감육 곡관의 피로손상 거동)

  • Yoon, Min-Soo;Kim, Jin-Weon;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1227-1234
    • /
    • 2012
  • In this study, fatigue tests were carried out using real-scale pipe bend specimens with wall-thinning defects under a cyclic bending load together with a constant internal pressure of 10 MPa. The wall-thinning defect was located at the extrados and the intrados of the pipe bend specimens. A fully reversed cyclic in-plane bending displacement was applied to the specimens. For the pipe bends with wall thinning at the extrados, an axial crack occurred at the crown of the pipe bend rather than at the extrados where the defect was located. In addition, the fatigue life was longer than that of a sound pipe bend predicted from the design fatigue curve in ASME Sec.III, and it was less dependent on the axial length of the wall-thinning defect. For the pipe bends with wall thinning at the intrados, a circumferential crack occurred at the intrados. In this case, the fatigue life was much shorter than that of a sound pipe bend predicted from the design fatigue curve, and it clearly decreased with decreasing axial length of the wall-thinning defect.

Nonlinear Strength Analysis of Laminated Composite Cylindrical Shells for the Optimum Laminate Structure (복합적층 원통형구각의 최적구조를 위한 비선형해석)

  • C.W.,Yum;J.W.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.45-56
    • /
    • 1990
  • This study deals with the nonlinear strength analysis of laminated composite cylindrical shells to find the optimum structure of pressure vessel. By applying the F.E.M. using the 8-node degenerated Isoparametric shell element and Total Lagrangian formulation and being adopted Newton-Raphson method with incremental load as a solution scheme. the optimum structure is found from the viewpoint of minimum displacement. As a results of linear analysis on the 9 cases of laminated structure, $[50^{\circ}/-50^{\circ}]$ composition of the shell laminate give the minimum deflection. In case of the nonlinear analysis by applying Quadratic Failure Criteria on laminated combination $[{\theta}^{\circ}/-{\theta}^{\circ}]$, shell laminate structure of ${\theta}=50^{\circ}$ under external uniform pressure was founded as a optimum structure and ${\theta}=50^{\circ}$ for the case of external and axial loading combined.

  • PDF

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

Evaluation of Residual Strength of CFRP Pressure Vessel After Low Velocity Impact (저속 충격 하중을 받은 탄소섬유강화 복합재 압력용기의 잔류강도 저하 평가)

  • Park, Jae-Beom;Kim, Dong-Ryun;Kim, Hyung-Geun;Hwang, Tae-Kyung
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • In this paper, the low velocity impact characteristics of filament winding CFRP pressure vessel was investigated using numerical and experimental methods. The cylinder part of CFRP vessel was impacted using triangular shape impactor which simulated the sharp edge of dropping tools and impact response behavior of CFRP was reviewed. The mechanical behavior, such as deformation and stress distribution, were also predicted by explicit finite element method and the validity of the model was investigated. For the quantitative evaluation of the residual strength of the pressure vessel after impact, a series of the ring specimens was cut from the impacted vessel and its burst pressure was measured by hydraulic pressure hoop tension test. As the results, the relationship between the residual strength degradation and the impact energy was successively obtained and a useful methodology to evaluate quantitatively the impact damage tolerance of CFRP pressure vessel was established.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Estimation of Buckling and Ultimate Strength of a Perforated Plate under Thrust (면내압축하중을 받는 유공판의 좌굴 및 최종강도 평가에 관한 연구)

  • Ko, Jae-Yong;Park, Joo-Shin;Joo, Jong-Gil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.41-47
    • /
    • 2004
  • Plate has cutout inner bottom and girder and Door etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and freight movement, piping etc.. Because cutout‘s existence is positioning in this place, and, elastic bucking strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic bucking strength and ultimate strength is one of important design criteria to decide structural elements size at early structure design step of a ship. Therefore, we need reasonable & reliable design formula for elastic bucking strength of the perforated plate. The author computed numerically ultimate strength change about several aspect ratios, cutout dimension, and plate thickness by using ANSYS Finite element analysis code based on finite element method in this paper.

  • PDF