DOI QR코드

DOI QR Code

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage

복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가

  • 천대성 (한국지질자원연구원 지구환경연구본부) ;
  • 박찬 (한국지질자원연구원 지구환경연구본부) ;
  • 정용복 (한국지질자원연구원 지구환경연구본부) ;
  • 박철환 (한국지질자원연구원 지구환경연구본부) ;
  • 송원경 (한국지질자원연구원 지구환경연구본부)
  • Received : 2012.02.21
  • Accepted : 2012.04.06
  • Published : 2012.04.30

Abstract

In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

피로파괴는 반복적인 하중에 의해 재료 내에 균열이 발생하고, 진전함에 따라 재료의 물성이 약화되어 최종적으로 파괴에 이르는 현상을 말하며, 일반적으로 반복적인 하중이 가해지는 기계나 구조물 등은 피로파괴를 고려한다. 암반구조물의 경우 일반적으로 동적인 반복하중에 의한 피로파괴보다는 정적인 크립에 의한 피로 파괴를 경험하는 경우가 대다수이다. 그러나 압축공기와 같은 물질을 지하에 저장하는 경우 물질의 입 출에 의한 내부 압력의 변화가 발생하기 때문에 지하저장시설이 위치하는 암반과 내부 콘크리트의 동적 피로파괴 특성을 검토해야한다. 본 연구에서는 복공식 지하 압축공기에너지 저장공동 내부에 설치되는 콘크리트 라이닝의 반복굴곡하중에 대한 물성변화와 플러그가 설치된 경계에서의 반복전단하중에 대한 물성변화를 실험적인 방법에 의해 알아보았다. 반복전단시험을 통해 적절한 수직응력에서 평면 인터페이스의 플러그도 역학적인 안정성을 확보할 수 있음을 알 수 있었다. 반복굴곡시험에서는 반복재하에 따른 콘크리트 라이닝의 강도저하 현상을 확인하였으며, 이로부터 S-N 곡선을 구하였다.

Keywords

References

  1. Amadei B. & Curran J. H., 1980, Creep behaviour of rock joints, 13th Canadian Rock Mechanics Symposium, Toronto, 146-150.
  2. Badge M. N. and Petros, V., 2009, Fatigue and dynamic energy behavior of rock subjected to cyclical loading, 46, 200-209. https://doi.org/10.1016/j.ijrmms.2008.05.002
  3. Byung-Ki Park and Seokwon Jeon, 2006, Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading, Journal of Korean society for rock, 16, 166-178.
  4. Byung-Ki Park and Seokwon Jeon, 2006, Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test, Journal of Korean society for rock, 16, 58-72.
  5. Chang-Woo Hong, Seokwon Jeon and Hae-Moon Choi, 2002, Shear Deformation and Failure Characteristics of Rock-Concrete Interfaces, Journal of Korean society of civil engineers, 22(6-c), 673-680.
  6. Dae-Sung Cheon, Eui-Seob Park, Yong-Bok Jung, Chulwhan Park and Joong-Ho Synn, 2008, Monitoring Technique using Acoustic Emission and Microseismic Event, Journal of Korean society for rock, 18, 1-9.
  7. Dohyun Park, Hyung-Mok Kim, Dong-Woo Ryu, Joong-Ho Synn and Won-Kyong Song, 2011, Numerical Study on the Optimal Shape of Concrete Plug for Compressed Air Energy Storage Caverns, Journal of Korean society for rock, 21, 164-173.
  8. Euiseob Park, 2000, Mechanical behaviour of a concrete plug in storage cavern: by experimental and numerical method, PhD Thesis.
  9. Hee-Suk Lee, 1999, A study for the mechanical and hydraulic behavior of rock joints under cyclic shear loading, PhD Thesis.
  10. Hyung-Mok Kim, Dong-Woo Ryu, So-Keul Chung and Won-Kyong Song, 2009, State of the Art for the Underground Unlined Rock Cavern Storage Technology for Compressed Air Energy Storage (CAES), Journal of the Korean society for geosystem engineering, 46, 614-624.
  11. Hyung-Mok Kim, Jonny Rutqvist, Dong-Woo Ryu, Choon Sunwoo and Won-Kyong Song, 2011, Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES), Journal of Korean society for rock, 21, 287-296.
  12. Jafari, M. K., Hosseini K. A., Pellet F., Boulon, M, Buzzi, O., 2003, Evaluation of shear strength of rock joints subjected to cyclic loading, Soil Dynamics & Earthquake Engineering, 23, 619-630. https://doi.org/10.1016/S0267-7261(03)00063-0
  13. KIGAM, 2009, Development of Underground Energy Storage System in Lined Rock Cavern, Research Paper.
  14. PAC, 2009, Acoustic emission level 1 course note.
  15. Xiao, J. Q., Ding, D. X., Jiang, F. L., Xu, G., 2010, Fatigue damage variable and evolution of rock subjected to cyclic loading, Int. J. Rock Mech. Min. Sci., 47, 461-468. https://doi.org/10.1016/j.ijrmms.2009.11.003
  16. Zhang, J., Stang, H., Li, V. C., 1999, Fatigue life prediction of fiber reinforced concrete under flexural load, Int. J. Fatigue, 21, 1033-1049. https://doi.org/10.1016/S0142-1123(99)00093-6

Cited by

  1. Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test vol.24, pp.1, 2014, https://doi.org/10.7474/TUS.2014.24.1.067